Impact Assessment of the Selected Factors on the Non-performing Mortgage Loans in the Czech Republic.

Student: Bc. Zdeňka Schindlerová

Vedoucí diplomové práce: doc. Ing. Aleš Melecký Ph.D.

Ostrava 2017
Zadání diplomové práce

Bc. Zdeňka Schindlerová

Student: Bc. Zdeňka Schindlerová

Studijní program: N6202 Hospodářská politika a správa

Studijní obor: 6202T010 Finance

Téma: Posouzení vlivu vybraných faktorů na hypoteční úvěry v selhání v České republice
Impact Assessment of the Selected Factors on the Non-performing Mortgage Loans in the Czech Republic

Jazyk vypracování: čeština

Zásady pro vypracování:
1. Úvod
2. Finanční stabilita, makroprudenciální politika a hypoteční trhy
3. Popis vybraných metod ekonometrické analýzy
4. Posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání
5. Závěr
Seznam použité literatury
Seznam zkratok
Prohlášení o využití výsledků diplomové práce
Seznam příloh
Přílohy

Seznam doporučené odborné literatury:

Formální náležitostí a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce: doc. Ing. Aleš Melecký, Ph.D.

Datum zadání: 18.11.2016
Datum odevzdání: 21.04.2017

Ing. Iveta Ratmanová, Ph.D. vedoucí katedry
prof. Dr. Ing. Zdeněk Zmeškal dekan fakulty
Místopřísežné prohlášení

Prohlašuji, že jsem celou práci, včetně všech příloh, vypracovala samostatně.

V Ostravě, dne 21. dubna 2017

Zdeňka Schindlerová
„Tímto bych velmi ráda poděkovala svému vedoucímu diplomové práce, doc. Ing. Aleši Meleckému, Ph. D. za vedení práce, cenné rady, informace a připomínky týkající se tématu diplomové práce. Děkuji také za věnovaný čas a trpělivost při konzultacích.“
Obsah
1 Úvod ... 8
2 Finanční stabilita, makroprudenci politika a hypotečni trhy 10
 2.1 Finanční stabilita .. 11
 2.1.1 Úloha ČNB ... 11
 2.1.2 Mezinárodní spolupráce .. 13
 2.1.3 Finanční krize .. 14
 2.1.4 Finanční stabilita v ČR .. 15
 2.2 Makroprudenci politika .. 19
 2.2.1 Nástroje makroprudenci politiky .. 21
 2.2.1.1 Proticyklická kapitálová rezerva ... 21
 2.2.1.2 Kapitálová rezerva ke krytí systémového rizika .. 21
 2.2.1.3 Bezpečnostní kapitálová rezerva .. 22
 2.2.1.4 Úřední sdělení ČNB .. 23
 2.2.1.5 Seznam jiných systémově významných institucí .. 25
 2.2.1.6 Vzájemné uznávání makroprudenci opatření (reciprocita) 25
 2.2.2 Hlavní cíle makroprudenci politiky stanovené ČNB ... 26
 2.2.3 Zátěžové testy ... 26
 2.2.4 Basilejské dohody o kapitálové přiměřenosti .. 27
 2.2.4.1 Basel I ... 27
 2.2.4.2 Basel II ... 28
 2.2.4.3 Basel III ... 28
 2.3 Hypotečni trhy .. 29
 2.3.1 Finančni trh ... 29
 2.3.2 Hypotečni úvěr .. 30
 2.3.3 Hypotečni trh v ČR ... 31
3 Popis vybraných metod ekonometrické analýzy .. 36

3.1 Formulace modelu .. 37
3.1.1 Ekonomická formulace modelu .. 37
3.1.2 Matematická formulace modelu .. 37
3.1.3 Ekonometrická formulace modelu .. 37

3.2 Sběr a analýza dat .. 38
3.2.1 Popis dat ... 38
3.2.2 Dekompozice časových řad .. 39
3.2.3 Analýza odlehlých a extrémních hodnot ... 40
3.2.4 Transformace časových řad .. 41

3.3 Odhady parametrů modelu .. 41
3.3.1 Korelační analýza .. 42
3.3.2 Odhad lineárního regresního modelu .. 42
3.3.3 Koeficient determinace .. 43

3.4 Verifikace modelu .. 44
3.4.1 Statistická verifikace ... 44
3.4.2 Ekonometrická verifikace .. 48
3.4.2.1 Autokorelace ... 48
3.4.2.2 Heteroskedasticita ... 52
3.4.2.3 Multikolinearita .. 53
3.4.2.4 Specifikace modelu ... 55
3.4.2.5 Normalita reziduí ... 56
3.4.3 Ekonomická verifikace .. 57

3.5 Predikce proměnných ... 58
4 Posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání........ 61
4.1 Formulace modelu ..62
 4.1.1 Ekonomická formulace modelu .. 62
 4.1.2 Matematická formulace modelu .. 65
 4.1.3 Ekonometrická formulace modelu .. 65
4.2 Sběr a analýza dat ..66
 4.2.1 Popis dat .. 66
 4.2.2 Dekompozice časových řad .. 73
 4.2.3 Analýza odlehlých a extrémních hodnot ... 74
 4.2.4 Transformace časových řad .. 75
4.3 Odhady parametrů modelu ..76
 4.3.1 Korelační analýza modelu .. 76
 4.3.2 Odhad lineárního regresního modelu ... 78
 4.3.3 Koeficient determinace modelu .. 79
4.4 Verifikace modelu ...81
 4.4.1 Statistická verifikace modelu .. 82
 4.4.2 Ekonometrická verifikace .. 83
 4.4.2.1 Autokorelace .. 83
 4.4.2.2 Heteroskedasticita .. 86
 4.4.2.3 Multikolinearita .. 87
 4.4.2.4 Specifikace modelu .. 89
 4.4.2.5 Normalita reziduí .. 90
 4.4.3 Ekonomická verifikace modelu .. 93
4.5 Predikce proměnných ..97
5 Závěr ..101
1 Úvod

Cílem diplomové práce je posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání v České republice a predikce budoucího vývoje. K predikci je využito celkem šest vybraných faktorů, jimiž jsou míra inflace, hrubý domácí produkt, obecná míra nezaměstnanosti, hypoteční úvěry poskytnuté domácnostem, úrokové sazby z nových hypotečních úvěrů a ukazatel podílu vlastního kapitálu na aktivech. Vliv jednotlivých proměnných na hypoteční úvěry v selhání je zkoumán na základě dvou lineárních regresních modelů, přičemž odhady jednotlivých faktorů jsou provedeny s použitím metody nejmenších čtverců. Vývoj hypotečních úvěrů v selhání je predikován pomocí váženého průměru predikcí obou modelů na rok dopředu.

Z hlediska struktury je diplomová práce rozdělena do tří obsahových částí, doplněných o úvod a závěr. V první části jsou popsány teoretické základy nutné k pochopení podstaty zkoumaného tématu. Postupně jsou objasněny pojmy spojené s finanční stabilitou, makroprudencií politikou a hypotečními trhy.

Druhá část práce je věnována teoretickému a metodickému popisu ekonometrické analýzy, konkrétně odhadu lineárního regresního modelu pomocí metody nejmenších čtverců. V této části je objasněna problematika analýzy dat, odhadu parametrů, verifikace a predikce výsledného modelu. Dále jsou detailně popsány postupy a vlastnosti, které musí být splněny, aby byla lineární regrese správně použita.
Třetí aplikační část práce spočívá v provedení ekonometrické analýzy, přičemž je postupováno přesně podle předcházející popisné části. Nejdříve jsou zkoumané proměnné popsány z hlediska vývoje v čase, poté je provedena dekompozice sezónních dat a analýza odlehlých hodnot. Nestacionární časové řady jsou transformovány a z takto upravených dat jsou sestaveny dva lineární regresní modely, které jsou samostatně analyzovány. V případě obou modelů je realizován odhad a jejich ověření z hlediska splnění všech předpokladů pro správnou aplikaci metody nejmenších čtverců, tj. ověření podmínek autokorelace, heteroskedasticity, multikolinearity, správné specifikace modelu a normality reziduí.

V poslední fázi je provedeno detailní posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání a na základě váženého průměru predikcí obou modelů je vyhodnocen budoucí vývoj zkoumané proměnné.
2 Finanční stabilita, makroprudenční politika a hypoteční trhy

2.1 Finanční stabilita

Stabilita ve finančních systémech je základním stavebním kamenem funkčního finančního sektoru. Finanční systém je institucionální mechanismus vytvořený za účelem alokace finančních zdrojů, produkce a poskytování finančních služeb. Součástí systému jsou finanční instituce, zákazníci těchto institucí, orgány státního dohledu. Diplomová práce je zaměřena na situaci v ČR, proto je postupně objasněna úloha ČNB, mezinárodní spolupráce, původ finanční krize z roku 2008 a vývoj finanční stability v ČR.

2.1.1 Úloha ČNB

Úloha ČNB je v oblasti finanční stability nenahraditelná. ČNB má hned dvě funkce, je hlavním regulatorním orgánem všech finančních institucí v ČR a je také bankou státu. Podle článku 98 Ústavy ČR je hlavním cílem ČNB stabilní cenová hladina. Cenová stabilita je projevem zdravého a fungujícího finančního systému, kterého lze dosáhnout pouze ve stabilním prostředí. V souladu s hlavním cílem určuje centrální banka měnovou politiku, vydává bankovky, mince, řídí a dohledí na peněžní oběh, platební styk i zúčtování bank. Regulační a kontrolní činnost vykonává nad bankovním sektorem, kapitálovým trhem, pojišťovnictvím, penzijními příspěvkovými a družstevními záložnami, institucemi elektronických peněz a směnárnami. Dalšími cíli ČNB je finanční stabilita, podpora udržitelného vývoje ekonomiky, funkce věřitele poslední instance a dohled nad platebními systémy. „Podle ČNB (2016) je finanční stabilita definována jako situace, kdy finanční systém plní své funkce bez závažných poruch a nežádoucích důsledků pro současný i budoucí vývoj ekonomiky jako celku a zároveň vykazuje vysokou míru odolnosti vůči šokům.“

K narušení finanční stability může dojít z důvodu oslabení finančního sektoru zevnitř, anebo zvenčí. Vnitřní oslabení je spojeno se vznikem zranitelných míst ve finančním systému a vnější oslabení bývá způsobeno silnými šoky, jako je např. nepříznivý makroekonomický vývoj či nestabilita hospodářského nebo institucionálního prostředí. Situace je o to horší, pokud dojde k interakci zranitelných míst i šoků. V takovémto případě může dojít až ke zhroucení důležitých finančních institucí a narušení základních funkcí finančního systému. Typickým příkladem je finanční krize, která je spojena s mnoha nepříznivými dopady na ekonomiku.

analýze je hlavní cíl spojen s predikcí nejpravděpodobnějšího vývoje ekonomiky, ale v případě analýzy finanční stability jsou primárně testovány dopady různých nepříznivých scénářů. Pravděpodobnost realizace těchto scénářů je velmi malá, ale přesto je vždy vycházeno z reálných hrozeb, jež mohou vážně narušit stabilitu celého finančního systému.

Cílem ČNB je dosáhnout takové míry odolnosti systému, při kterém dojde k podstatnému snížení rizika vzniku finanční nestability. Zdravý vývoj finančních institucí je klíčovým předpokladem pro úspěšné plnění tohoto cíle. Velmi důležitá je také mezinárodní spolupráce s ostatními národními a mezinárodními autoritami.

2.1.2 Mezinárodní spolupráce

V době globalizace a propojování světových ekonomik je kladen čím dál větší důraz na mezinárodní spolupráci v oblasti zajištění finanční stability. Na základě celosvětové kryzí z roku 2008 byly zvýšeny požadavky na prohlubení mezinárodní spolupráce v oblasti finanční stability. Počátkem roku 2011 byla na evropské úrovni založena Evropská rada pro systémová rizika (ESRB), která je spojena s Evropským orgánem pro bankovnictví (EBA), Evropským orgánem pro cenné papíry a trhy (ESMA) a Evropským orgánem pro pojišťovnictví a zaměstnanecké penzijní pojištění (EIOPA) podstatou Evropského systému finančního dohledu (ESFS). ESRB je zaměřena na identifikaci systémových rizik a zajištění stability evropského finančního systému jako celku. Hlavním úkolem této organizace je včasné identifikace zvýšených rizik systémového charakteru, na základě čehož jsou ESRB vydávána varování a doporučení vedoucí k poklesu rizik. Guvernéři národních centrálních bank členských států Evropské unie (EU) jsou součástí ESRB a přímo se podílejí na jejím chodu. Guvernéř je společně s dalším členem bankovní rady ČNB součástí Generální rady ESRB. Další členové, kteří se podílejí na fungování organizace, jsou hlavně experti z řad ČNB v Poradním technickém výboru (ATC) a jeho pracovních skupinách.

Ukázkovým příkladem negativního působení globalizace je finanční krize, která propukla v roce 2008 na trhu subprime hypoték v USA. Vlivem silného propojení jednotlivých ekonomik došlo k velmi rychlému rozšíření krizové situace, a to až do podoby světové systémové finanční krize, pro niž byl charakteristický přenos rizik mezi finančními systémy jednotlivých zemí.
2.1.3 Finanční krize

Ve snaze podpořit americkou ekonomiku byla v 90. letech propagována myšlenka, že každý Američan by měl mít svůj vlastní dům. Významný program na podporu vlastního bydlení spočíval ve zřízení polostátních hypotečních agentur Fannie Mae, Freddie Mac a Ginnie Mae, jejichž cílem bylo zajistit dostatečné množství finančních prostředků pro banky poskytující hypoteční úvěry. Agentury plošně odkupovaly hypoteční zástavní listy amerických bank a transformovaly je do různých finančních balíčků (sekuritizace). Tyto balíčky dále prodávaly investorům a garantovaly, že hypotéky budou zaplaceny. Prostřednictvím agentur mohly být poskytovány hypotéky i málo movitým klientům, protože riziko bylo přeneseno na jiný subjekt. V praxi byly hypotéky poskytovány bez většího prověření téměř každému. Nízká averze k riziku spolu s poklesem úrokových sazeb vedla k nadměrné úvěrové expanzi.

Dalším problémem bylo, že výše Loan to Value (LTV\(^1\)) z poskytnutých hypoték mnohdy přesahovala 100 %. I když se bankám podařilo zastaveně nemovitosti prodat, stejně přicházely o velké množství peněz. Čím dál více finančních institucí v USA mělo existenční potíže a krize, jež byla na začátku označována jako hypoteční, přerostla ve světovou finanční krizi. Globální krize naplno propukla v důsledku pádu významné investiční banky Lehman Brothers v září roku 2008. Krach investiční banky s téměř 160letou historií vyvolal pád akciových trhů po celém světě. Několik evropských bank v Británii, Beneluxu, Německu a na Islandu bylo zachráněno částečným nebo úplným zestátněním. Následky krize byly citelné po celém světě a na základě této zkušenosti došlo ke spuštění nových projektů na podporu a kontrolu finanční stability.

\(^1\) LTV je poměr mezi výši úvěru a zástavní hodnotou nemovitosti.
2.1.4 Finanční stabilita v ČR

Problematika finanční stability v ČR je popsána na základě dokumentů „Zprávy o stabilitě bankovního sektoru za rok 2003“, „Zprávy o finanční stabilitě 2004-2016“ a informací ze stránek ČNB.

Začátek nového tisíciletí byl spojen s internetovou bublinou v USA, tj. „dot com bubble“. Vznik bubliny souvisel s extrémním nadhodnocováním tržní ceny firém, jež své podnikání zakládaly na internetu. Jednalo se o společnosti, které provozovaly různé online služby a podstatně část z nich byla i webovémi publicistickými médii. Vzhledem k tomu, že čtenáři nebyli ochotni platit za poskytovaný obsah, neměla většina podniků realní příjmy. Hodnota akcií těchto firém byla odvozována z tržní ceny podílu, tedy z relativní velikosti počtu registrovaných uživatelů. Roku 2001 začala hodnota na webu založených firém

2 Řetězec navazujících ekonomických vazeb mezi přírůstkem měnové báze, přírůstkem peněžní zásoby a průměrnou změnou cenové hladiny v dlouhém období.

Význam analýz finanční stability byl ze strany ČNB poprvé zdůrazněn při definování priorit ekonomického výzkumu na období 2001 až 2006 a zveřejnění „Zprávy o stabilitě bankovního sektoru za rok 2003“). V polovině roku 2003 byl bankovní sektor zhodnocen jako stabilní díky dokončené privatizaci, očištění úvěrových portfolií od nekvalitních úvěrů a zkvalitnění know-how jak v oblasti bankovních produktů, tak v rozdílném přístupu k řízení rizik ze strany nových zahraničních strategických vlastníků. V důsledku dynamického růstu úvěrů obyvatelstvu došlo v tomto roce k výraznému zvýšení úvěrového portfolia bank, které meziročně vzrostlo o více než 30 %. Všeobecně největší podíl na úvěrech obyvatelstvu je tvořen úvěry na bytové potřeby s dlouhodobou splatností.

V roce 2004 byla situace na finančních trzích velmi pozitivní. Ekonomický růst byl vysoký díky lídrům světové ekonomiky, tj. USA, Číně a Japonsku. Tento rok byl pro ČR velmi významný, protože v květnu 2004 vstoupila do EU. V českém bankovním sektoru rostla ziskovost dvakrát rychleji než v západní Evropě, přičemž úvěry domácnostem meziročně rostly o více než 35 %. Na druhou stranu velké riziko pro stabilitu finančních trhů v ČR představoval vývoj veřejných financí. Přes velmi pozitivní ekonomické vyhlídky byl každoročně vykazován deficit státního rozpočtu, spojený s růstem veřejného dluhu a klesajícím korunovým ratingem ČR.

Ekonomický růst byl charakteristický i pro rok 2005. Ziskovost bankovního sektoru meziročně vzrostla o 20 % a z vysokých bankovních zisků byly tvořeny stabilizační polštáře ke krytí rizik. V těchto letech byla na vstupu sféra nebankovních finančních institucí, přesto banky v roce 2005 vlastnily přes 75 % finančních aktiv. Úvěrování domácností v ČR stále rostlo a v roce 2005 téměř dvě třetiny úvěrů tvořily hypoteční úvěry. Zásluhou velmi dobré ekonomické situace byl státní rozpočet méně deficitní, než se očekávalo.

Vývoj české ekonomiky lze roku 2007 označit za poměrně příznivý, přestože se v zahraničí schylovalo k velkým problémům. V průběhu roku docházel k významnému konstantnímu posilování české koruny, zpomalení hospodářského růstu v zahraničí a snížení poptávky po českých výrobcích, což vyústilo v pokles čistého exportu v ČR. Těsně před vypuknutím krize byl vlivem přehřáté ekonomiky nastartován růst cen a společně s poklesem čistého exportu bylo zpomaleno i tempo růstu výstupu české ekonomiky. Zadluženost tuzemských domácností rostla, ale mnohem méně než v zemích západní Evropy a státní rozpočet byl opět deficitní.

Krizová situace v ČR přetrvávala i v roce následujícím. Na přelomu let 2008 a 2009 začaly být změně střední i východní Evropy značně neatkraktivní, což mělo za následek poměrně rychlé znehodnocení koruny a oživení českého exportu.
Během roku 2010 stále přetrvával krizový stav v ekonomice a finanční trhy byly oslabené velkou nejistotou. Zároveň začaly být jednotlivými státy a organizacemi formovány nové legislativní normy vedoucí k větší stabilizaci finančního sektoru. Objem poskytnutých úvěrů domácnostem byl vyšší než v minulých dvou letech, ale současně narůstaly i úvěry v selhání, jež byly stimulovány zejména nepříznivými ekonomickými podmínkami předcházejících let.

Dopady krize byly citelné i v roce 2011, přestože na českém trhu přetrvával mírný ekonomický růst, a to zejména zásahem exportu do zahraničí. Meziroční disponibilní příjmy mírně klesaly, ale podíl úvěrů v selhání nijak výrazně nevzrostl.

Mírný růst ekonómiky přetrvával i v roce 2012. Český finanční sektor byl v porovnání se zahraničím stabilní a v oblasti finančních trhů byly za ČR vykazovány nadprůměrné výsledky. Problematickou oblastí byla stále rostoucí nezaměstnanost a klesající uplatnění nezaměstnaných na trhu práce. Podíl úvěrů v selhání byl však téměř stejný jako v roce minulém, přesto tato situace vedla k poklesu disponibilních příjmů domácností.

V roce 2013 byla situace téměř stejná jako v předcházejících letech. Ekonomický růst byl spolu s inflací velmi nízký, a to jak v ČR, tak i v celé Evropě. Vlivem vysoké nezaměstnanosti klesaly příjmy domácnostem a v oblasti exportu docházelo k postupnému poklesu exportu, zejména v případě Německa. Cílem ČNB bylo udržet cenovou stabilitu, a tím přispět ke stabilnímu vývoji české ekonomiky. Nejdůležitější změnou v tomto roce bylo zahájení devizových intervencí, jež spočívaly v udržení jednostranného neomezeného kurzového závazku koruny k euru, a výsledkem bylo zachovávání úroveň cenového plovoucí kurzu. V listopadu 2013 oslabila ČNB kurz koruny mírně nad úroveň úrovně kurzového závazku stanoveného na 27 CZK/EUR. Tento krok souvisel s primárním cílem centrální banky udržet inflaci okolo 2 %. Vzhledem k oslabení české koruny vůči euru vzrostl export firem v ČR, jenž byl doprovázen pozvolným ekonomickým růstem. Stále kumulující problém byl na straně vlády, tj. deficitní rozpočet a neustálý nárůst veřejného dluhu.

První výraznější oživení ekonomiky přišlo v roce 2014, kdy na základě růstově nastavené fiskální politiky a slabší koruně byla podstatně oživena domácí ekonomika. Nastartování domácí ekonomiky spolu s tehdejším poklesem úrokových sazeb vedlo k výraznému uvolnění reálných měnových podmínek. S růstem české ekonomiky silily také ekonomiky zahraniční, což se výrazně projevilo na rostoucím exportu. Inflace byla i v tomto období stále velmi nízká, přičemž hlavním důvodem byl 50% propad cen ropy. Dále došlo
ke snížení nezaměstnanosti a vlivem nízkých úrokových sazeb začínal opět významně narůstat objem úvěrů poskytnutých domácnostem. Finanční i nefinanční instituce byly v tomto roce velmi stabilní na rozdíl od financování vlády, jelikož byl opět vykázán deficit státního rozpočtu.

Růst české ekonomiky a uvolněné měnové podmínky pokračovaly i v roce 2016. Přetrvávající trend nízkých úrokových sazeb byl opět spojen se zvyšováním zadluženosti obyvatelstva a poklesem úvěrů v selhání. Počet úvěrů poskytnutých obyvatelstvu stále rostl, např. na úvěrech na bydlení bylo domácnostem vyplaceno celkem 337 mld. Kč, což bylo o 15 % více než před rokem. Zrychlený růst ekonomiky byl příznivý zejména pro banky, investiční fondy a fondy penzijních společností, kterým podstatně vzrostla aktiva. Úvěrové riziko bylo ve všech segmentech i nadále na relativně nízké úrovní. Finanční stabilita na českém trhu byla upevněna i ze strany vlády. Poprvé od roku 1995 byl vykázán přebytek státního rozpočtu ve výši 61,8 mld. Kč. Riziko spojené s dlouhodobě nízkými úrokovými sazbami spočívá ve větší citlivosti domácností na potenciální příjmový a úrokový šok, jenž by mohl mít vliv na úvěrové ztráty a pokles ekonomické aktivity.

Intervence oslabující českou korunu byly realizovány ve značné míře i na počátku roku 2017. Dne 6. dubna 2017 oznámila ČNB ukončení jednostranného kurzového závazku a návrat k řízenému plovoucímu kurzu na měnovém páru CZK/EUR.

2.2 Makroprudenční politika

Makroprudenční politika (těž makroobezřetnostní politika) je zaměřena na celkovou stabilitu finančního systému. Komárková, Frait, Komárek (2013) uvádí, že v makroprudenční politice jsou primárně sledovány endogenní procesy, kde na první

„V zákoně č. 6/1993 Sb., o České národní bance je uvedeno, že ČNB rozpoznává, sleduje a posuzuje rizika ohrožení stability finančního systému a v zájmu předcházení vzniku nebo snižování těchto rizik přispívá prostřednictvím svých pravomocí k odolnosti finančního systému a udržení finanční stability a vytváří tak makroobezřetnostní politiku.“

Komárková, Frait, Komárek (2013) uvádí, že cíl makroprudenční politiky spočívá v zamezení vzniku a rozšíření systémového rizika ve finančním systému, čímž je snižena pravděpodobnost vzniku finančních krizí s významnými ztrátami pro celou ekonomiku. Makroprudenční politika by měla působit zejména preventivně a v případě selhání prevence by dopady finanční nestability na finanční systém měly být minimální.

Nejdříve jsou bliže charakterizovány nástroje využívané ČNB k řízení makroprudenční politiky a poté jsou zmíněny hlavní cíle, které jsou pomocí jednotlivých nástrojů plněny. V další části je popsán princip zátěžových testů, jimiž je testována finanční stabilita země a v poslední části je objasněna koncepce Basilejských dohod, které byly roku 2007 implementovány do českého práva.
2.2.1 Nástroje makroprudencií politiky

V praktické rovině lze makroprudencií politiku definovat jako proces aplikace sady nástrojů, jenž slouží ke zvýšení odolnosti finančního systému prostřednictvím omezování vzniku rizik, která mohou být vytvářena jednotlivými finančními institucemi nebo jejich vzájemnými vazbami. Jednotlivé nástroje makroprudencií politiky uplatňované v ČR jsou:

- proticyklická kapitálová rezerva,
- kapitálová rezerva ke krytí systémového rizika,
- bezpečnostní kapitálová rezerva,
- úřední sdělení ČNB,
- seznam jiných systémově významných institucí a
- vzájemné uznávání makroprudenciích opatření.

2.2.1.1 Proticyklická kapitálová rezerva

Proticyklická kapitálová rezerva slouží ke zvýšení odolnosti finančního systému vůči rizikům. Tato rizika jsou spojena s chováním bankovního sektoru v průběhu finančního cyklu, pro který je typické, že společně s velkými výkyvy v úvěrové dynamice zesilují i cyklické výkyvy v ekonomické aktivitě. Pokud ČNB usoudí, že dochází ke zvyšování cyklické složky systémového rizika, zajistí akumulaci kapitálu v bankovním sektoru tvorbou rezerv, které zvyšují jeho odolnost. V období poklesu cyklické složky jsou rezervy rozpouštěny a využity jako kapitálový polštář. Typickým příkladem je, že v období expanze roste množství poskytovaných úvěrů, ze kterých jsou bankami vytvářeny rezervy. V období recese naopak klesá zájem o úvěry a nastává situace, kdy je potřeba rozpustit uspořenou kapitálovou rezervu. Vytvořená rezerva umožňuje odvrátit, či alespoň snížit propad úvěrové nabídky bank a přenos dodatečného šoku z finančního sektoru do reálné ekonomiky. V prvním čtvrtletí roku 2017 je proticyklická kapitálová rezerva stanovená bankovní radou ČNB ve výši 0,5 %, která je pro obchodníky s cennými papíry, banky, spotřební a úvěrová družstva závazná od 1. ledna 2017. Zavedení kapitálové rezervy je spojeno se silnou dynamikou úvěrů poskytovaných domácnostem, jež zvyšuje zranitelnost sektoru vůči náhlým ekonomickým výkyvům.

2.2.1.2 Kapitálová rezerva ke krytí systémového rizika

Kapitálová rezerva ke krytí systémového rizika je vytvářena za účelem omezení systémového rizika plynoucího z potenciální destabilizace příslušných bank. Příslušné
banky jsou vybírány ČNB na základě systémové významnosti, která je odvozena od velikosti, složitosti, významnosti a propojenosti s dalšími finančními institucemi. Vybrané banky jsou natolik významné, že destabilizace kterékoli z nich může poškodit důvěru ve schopnost bankovního sektoru poskytovat efektivně finanční služby, což by mohlo mít velmi nepříznivý dopad na finanční systém a celou českou ekonomiku.

Každou bankou v ČR je vykazována jiná úroveň odhadované systémové významnosti, čemuž odpovídá příslušná výše sazby kapitálové rezervy ke krytí systémového rizika. V současné době je rezerva stanovena jen pro prvních pět nejvýznamnějších bank v ČR. Jednotlivé banky a sazby kapitálových rezerv, které musí být odvedeny ČNB, jsou uvedeny v Tab. 2.1.

<table>
<thead>
<tr>
<th>Název finanční instituce</th>
<th>Sazba od 1.11.2014</th>
<th>Sazba od 1.1.2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Česká spořitelna, a.s.</td>
<td>3,0 %</td>
<td>3,0 %</td>
</tr>
<tr>
<td>Československá obchodní banka, a.s.</td>
<td>3,0 %</td>
<td>3,0 %</td>
</tr>
<tr>
<td>Komerční banka, a.s.</td>
<td>2,5 %</td>
<td>3,0 %</td>
</tr>
<tr>
<td>UniCredit Bank Czech Republic and Slovakia, a.s.</td>
<td>1,0 %</td>
<td>2,0 %</td>
</tr>
<tr>
<td>Raiffeisenbank, a.s.</td>
<td>-</td>
<td>1,0 %</td>
</tr>
</tbody>
</table>

Zdroj: www.cnb.cz

2.2.1.3 Bezpečnostní kapitálová rezerva

Bezpečnostní kapitálová rezerva je podle ČNB (2017) poměrně nový obezřetnostní nástroj, který je vytvořen k uchování kapitálu banky. Tato rezerva je tvořena ve výši 2,5 % z celkového objemu rizikové expozice tvořené kapitálem nejvyšší kvality, tj. kmenový kapitál Tier 1. V zákoně č. 21/1992 Sb. o bankách je uvedeno, že dodržování bezpečnostní kapitálové rezervy je povinné pro všechny banky, přičemž stanovená 2,5% sazba je v čase neměnná. V rámci implementace evropské regulace do českého práva byla bezpečnostní
kapitálová rezerva zavedena okamžitě, přičemž po bankách je požadováno plnění této rezervy v plné výši od roku 2014.

2.2.1.4 Úřední sdělení ČNB

Formou úředního sdělení ČNB vydává doporučení k poskytování retailových úvěrů zajišťených rezidenční nemovitostí. Doporučení je vypracováno na základě doporučení ESRB a dalších mezinárodních orgánů. Tímto nástrojem je sledován jeden z hlavních průběžných cílů makroprudenciální politiky, kterým je zmírnit nadměrný růst úvěrů a finanční páky.

Rychlým růstem úvěrů zajišťených rezidenční nemovitostí při současném uvolňování úrokové i neúrokové složky úvěrových podmínek a zvyšováním cen rezidenčních nemovitostí může dojít k akumulaci systémových rizik v bankovním sektoru. V doporučení vydané ESRB je uvedeno, že k prosazování průběžného cíle je potřeba zmírnit, ideálně vyloučit nadměrný růst úvěrů v souvislosti s financováním nákupu nemovitostí stanovením maximálního poměru LTV. Maximální hodnota LTV je nastavena do takové výše, aby v případě volatilitity cen nemovitostí dlužník nevstupoval do závazků významně převyšujících hodnotu zastavené nemovitosti. V nepříznivém období dochází k poklesu cen nemovitostí a je potřeba, aby snížená hodnota nemovitostí i v tomto období stále sloužila jako dostatečné zajištění poskytnutého úvěru.

V poslední době existují náznaky dílčího uvolňování úvěrových standardů, přičemž pokračování tohoto trendu společně s nízkými úrokovými sazbami, silnou bilanční likviditou úvěrových institucí a růstem cen nemovitostí by v budoucnu mohly být zdrojem systémového rizika. Z tohoto důvodu vydává ČNB úřední sdělení, ve kterém jsou obsažena kvantitativní i kvalitativní doporučení, jejichž cílem je přispět ke zkvalitnění existujících interních systémů řízení rizik v institucích a podpořit obezřetný přístup v oblasti poskytování úvěrů zajišťených rezidenční nemovitostí.

Tab. 2.2 Doporučení k poskytování retailových úvěrů zajištěných nemovitostí

<table>
<thead>
<tr>
<th>Doporučení</th>
<th>Osobnosti k poskytování retailových úvěrů zajištěných rezidenční nemovitostí</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>Dodržování limitů pro hodnoty LTV u nově poskytovaných retailových úvěrů zajištěných rezidenční nemovitostí.</td>
</tr>
<tr>
<td>B:</td>
<td>Hodnocení schopnosti klienta splácet a odolat zvýšené zátěži.</td>
</tr>
<tr>
<td>C:</td>
<td>Zamezení uvoľňování úvěrových standardů stanovovaným nadměrných délek splatností či nestandardních průběhů splácení.</td>
</tr>
<tr>
<td>D:</td>
<td>Obezřetný přístup k refinancovaným úvěrům s navýšením zůstatkové hodnoty jistiny.</td>
</tr>
<tr>
<td>E:</td>
<td>Poskytování úvěrů sjednaných zprostředkovateli.</td>
</tr>
<tr>
<td>F:</td>
<td>Poskytování úvěrů k financování koupě rezidenční nemovitosti pro další pronájem.</td>
</tr>
</tbody>
</table>

Charakteristika jednotlivých doporučení je poměrně obsáhlá, proto jsou dále popsána pouze vybraná zásadní opatření.

Institucím je doporučeno, aby podíl nově poskytnutých retailových úvěrů zajištěných rezidenční nemovitostí s ukazatelem LTV v intervalu:

- 90–100 % nečinil více než 10 % objemu retailových úvěrů zajištěných rezidenční nemovitostí poskytnutých v daném čtvrtletí do 30. září 2016,
- 85–95 % nečinil více než 10 % objemu retailových úvěrů zajištěných rezidenční nemovitostí poskytnutých v daném čtvrtletí od 1. října 2016,
- 80–90 % nečinil více než 15 % objemu retailových úvěrů zajištěných rezidenční nemovitostí poskytnutých v daném čtvrtletí od 1. dubna 2017.

Dále je institucím doporučeno, aby ukazatel LTV žádného retailového úvěru zajištěného rezidenční nemovitostí nepřesáhl 100 % do 30. září 2016, 95 % od 1. října 2016 a 90 % od 1. dubna 2017.

Instituce by měly při poskytování retailových úvěrů zajištěných rezidenční nemovitostí obezřetně vyhodnocovat schopnosti klienta splácet úvěr z vlastních zdrojů. Dále by měla být vyhodnocena schopnost klienta splácet úvěr při zhoršených podmínkách.

Délka splatnosti retailového úvěru zajištěného rezidenční nemovitostí by měla být kratší, než je horizon ekonomické aktivity klienta či životnost nemovitosti, přičemž obecně by neměla přesahovat 30 let.

Instituce by měly v případě spolupráce se zprostředkovateli úvěrů uplatňovat obezřetný přístup a zohledňovat rizika související s jejich odlišnými zájmy, které mohou vytvářet potenciál pro nadměrné uvoľňování úvěrových standardů.
ČNB pravidelně hodnotí plnění doporučení A až F ze strany institucí a pololetně provádí výběrová šetření struktury nově poskytovaných úvěrů. Výsledky jsou vždy uveřejněny ve Zprávě o finanční stabilitě za sledované období.

2.2.1.5 Seznam jiných systémově významných institucí

ČNB je povinna stanovit seznam jiných systémově významných institucí a minimálně jednou ročně tento seznam přezkoumat. V posledním přezkumu provedeném v listopadu 2016 (na datech k polovině roku 2016) byly pro rok 2017 určeny jako jiné systémově významné instituce:

• Československá obchodní banka,
• Komerční banka,
• Česká spořitelna,
• UniCredit Bank Czech and Slovakia,
• PPF PH B.V. (osoba regulovaného konsolidačního celku PPF banka),
• Raiffeisenbank a
• Jakobovič & Tkáč (osoba regulovaného konsolidačního celku J&T banka).

ČNB nepovažuje za nutné stanovovat bankám zařazeným mezi jiné systémově významné instituce dodatečný kapitálový požadavek, protože banky s vysokým stupněm domácí systémové významnosti mají povinnost udržovat kapitálovou rezervu ke krytí systémového rizika.

2.2.1.6 Vzájemné uznávání makroprudenčních opatření (reciprocita)

Na finančním trhu v ČR mohou působit zahraniční subjekty formou poboček, nebo na základě přímého přeshraničního poskytování služeb. Makroprudenční opatření přijatá na tomto území nemusí být vždy pro zahraniční subjekty závazná, což může způsobit oslabení účinnosti přijatých opatření a vznik nerovných podmínek. Z tohoto důvodu byl do pravidel makroprudenční politiky včleněn institut reciprocity, tj. automatické uplatnění příslušných opatření i v dalších členských zemích. U některých opatření se zřejmými přeshraničními dopady je podle CRD IV stanovena povinná reciprocita. Jedná se o opatření související s bankovní expozicí, jako je např. proticyklická kapitálová rezerva.

4 Capital Requirements Directive je směrnice Evropského parlamentu a Rady 2013/36/EU ze dne 26. června 2013 o přístupu k činnosti úvěrových institucí a o obezřetnostním dohledu nad úvěrovými institucemi a investičními podniky.
2.2.2 Hlavní cíle makroprudenční politiky stanovené ČNB

V souladu s doporučením ESRB je při výběru vhodných nástrojů makroprudenční politiky vycházeno z průběžných cílů. Na základě plnění jednotlivých cílů je snižována pravděpodobnost výskytu některých zdrojů systémového rizika a příslušných transmisních mechanismů. Přehled klíčových cílů makroprudenční politiky podle ČNB (2017) je uveden v Tab. 2.3.

<table>
<thead>
<tr>
<th>Hlavní cíle</th>
<th>Zmírnění a vyloučení nadměrného růstu úvěrů a finanční páky.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zmírnění a vyloučení nadměrného nesouladu splatností a nedostatku likvidity na trhu.</td>
</tr>
<tr>
<td></td>
<td>Omezení koncentrace přímých a nepřímých expozic.</td>
</tr>
<tr>
<td></td>
<td>Omezení rizik spojených s nežádoucí motivací finančních institucí a morálním hazardem.</td>
</tr>
</tbody>
</table>

2.2.3 Zátěžové testy

Odolnost finančních institucí se sídlem v ČR a finančního systému jako celku je ČNB pravidelně hodnocena prostřednictvím zátěžového testování. Na základě výsledků těchto testů je zhodnocena odolnost finančního systému vůči potenciálním nepříznivým vlivům a šokům. ČNB je uplatňován jak agregátní/makro (top-down), tak individuální/mikro (bottom-up) přístup. V makrozátěžových testech je hodnocena odolnost bankovního sektoru a sektoru penzijních společností jako celku. V případě mikrozátěžových testů je naopak hodnocena odolnost každé individuální banky a pojišťovny. Scénáře pro jednotlivé zátěžové testy jsou připravovány přímo ČNB, ale v případě pojišťoven jsou navíc jednou za dva roky využívány též scénáře připravené evropským orgánem EIOPA. Výsledky zátěžových testů jsou pravidelně zveřejňovány ve Zprávách o finanční stabilitě. Od roku 2012 jsou testy realizovány s pololetní nebo roční frekvencí.

Jak uvádí ČNB (2017) zátěžové testy jsou založeny na určitých makroekonomických scénářích, pro jejichž připravu je využíván oficiální predikční model ČNB doplněný o odhad vývoje některých doplňkových ukazatelů. Jednotlivé zátěžové scénáře jsou sestaveny na základě rizik identifikovaných pro českou ekonomiku v nejблиžším období. Prognóza

vývoje inflace, HDP a dalších makroekonomických veličin pro následujících dvanáct čtvrtletí vstupuje do modelů růstu úvěrů a modelů kreditního rizika. Modely kreditního rizika jsou využívány k predikcii hlavních parametrů úvěrového rizika, především hodnoty pravděpodobnosti selhání (PD) pro následující čtyři úvěrové segmenty: nefinanční podniky, úvěry obyvatelstvu na bydlení, spotřebitelské úvěry obyvatelstvu a ostatní úvěry. Modely růstu úvěrů jsou využívány k odhadu růstu bankovních portfolií v závislosti na makroekonomickém vývoji.

V zátěžových testech je testováno operační, tržní a úvěrové riziko bank. Největší důraz je kladen na testování úvěrového rizika, jež tvoří přibližně 80 % všech kapitálových požadavků. Úvěrové riziko je založeno na využití proměnné PD u všech hlavních segmentů úvěrového portfolia. Dalším parametrem úvěrového rizika je ztráta při selhání (LGD), jež je sestavena odborníky podle aktuálního makroekonomického vývoje. Poslední veličina expozice při selhání (EAD) je sestavována s využitím modelu pro úvěrový růst. Na základě součinu těchto proměnných je v každém čtvrtletí pro každý úvěrový segment spočítána očekávaná ztráta (v mil. Kč), na níž budou banky tvořit nové opravné položky.

Největší banky v ČR aplikují pokročilé přístupy pro výpočet kapitálových požadavků k úvěrovému riziku. Tyto přístupy jsou formovány na základě druhé Basilejské dohody o kapitálové přiměřenosti (Basel II.). V rámci Basel II. jsou kapitálové požadavky k úvěrovému riziku funkcí parametrů PD, LGD a EAD. Nárůst PD a LGD vede za podmínky neměnného objemu portfolia k nárůstu rizikově vážených aktiv (RVA).

2.2.4 Basilejské dohody o kapitálové přiměřenosti

Basilejské dohody o kapitálové přiměřenosti (Basel) vznikly jako reakce na časté defaulty bank ve světě, způsobené nadměrným úvěrovým rizikem a nedostatečným kapitálovým vybavení bank v devadesátých letech 20. století. Vzhledem k vývoji finančních trhů byl postupem času koncept Basel hned několikrát pozměněn.

2.2.4.1 Basel I.

První Basilejská dohoda o kapitálové přiměřenosti (Basel I.) byla vypracována Basilejským výborem pro bankovní dohled6 (BCBS) v roce 1988. V této dohodě byla formována první pravidla pro mezinárodně činné banky a poprvé byl stanoven limit 8%

6 BCBS představuje fórum pro pravidelnou spolupráci v oblasti bankovního dohledu, jenž působí při Bance pro mezinárodní platby (BIS).

2.2.4.2 Basel II.

2.2.4.3 Basel III.

Za prvé vzrostou požadavky na výši kapitálových zdrojů bank. Hodnota kapitálové přiměřenosti má být postupně navýšena o konzervační polštář (conservation buffer) a proticyklický polštář (countercyclical buffer). Konzervační polštář je stanoven v pevné výši 2,5 % a bude vytvářen jako dodatečná kapitálová rezerva na krytí finančních ztrát.

7 Skupinu G10 tvořilo USA, Japonsko, Německo, Velká Británie, Francie, Itálie, Kanada, Nizozemsko, Švýcarsko, Belgie a Švédsko.
Proticyklický polštář bude navýšován podle aktuální situace na trhu, přičemž hodnota proticyklického polštáře není pevně stanovena a může být ČNB průběžně navýšena od 0 % do 2,5 %. Ve fázi ekonomické expanze může být kapitálový požadavek nastaven až na hodnotu 13 %, naopak ve fázi kontrakce může být kapitálový požadavek nastaven pouze na hodnotu 10,5 %.

Za druhé je v oblasti řízení rizik stanoveno doporučení na snížení významu externího ratingu ve prospěch interních systémů pro vyhodnocení úvěrové kvality. Dále by měla být kapitálová přiměřenost doplněna novým ukazatelem, pákovým poměrem (LR), jenž bude sloužit k omezení cizích zdrojů v bankovním sektoru.

Za třetí jsou pro účely posílení řízení likvidity sledovány dva nové ukazatele. První ukazatel je poměr likvidního krytí (LCR), který je zaměřen na posílení 30denní likvidity. V rámci tohoto ukazatele je sledováno, jestli jsou instituce schopny pokrýt 100 % čistého odlivu likvidity pomocí vysoce likvidních aktiv. Druhý ukazatel je poměr čistého stabilního financování (NSFR). V tomto případě je sledováno, zda instituce dodržují pravidla obezřetného financování, tj. dlouhodobé úvěry jsou financovány ze stabilních dlouhodobých zdrojů a krátkodobé úvěry mohou být financovány z krátkodobých zdrojů.

2.3 Hypoteční trhy

Jak uvádí Jiřek (2009) trhem je obecně představen proces koupě a prodeje. Trh je obvykle členěn na trh zboží, služeb, výrobních činitelů a finanční trh. Pro účely diplomové práce je dále stručně rozehra na podstata finančního trhu, kategorizace hypotečního trhu a vývoj hypotečního trhu v ČR.

2.3.1 Finanční trhy

Finanční trhy jsou místem, kde dochází k soustředění, rozmisťování a přerozdělování dočasně volných finančních prostředků na základě nabídky a poptávky. Z hlediska splatnosti lze podle ČNB (2017) finanční nástroje rozdělit na krátkodobé (do 1 roku), střednědobé (1 až 4 roky) a dlouhodobé (nad 4 roky). Z věcného hlediska lze finanční trhy rozdělit na peněžní trhy, kapitálové trhy, devizové trhy, komoditní trhy a úvěrové trhy.

Peněžní trh je trhem s finančními nástroji, které mají platnost do 1 roku, naopak na kapitálových trzích je obchodováno s finančními nástroji, jejichž splatnost je delší než 1 rok. Na devizových trzích je obchodováno s cizími měnami v bezhotovostní formě. Komoditní
trhy jsou řazeny do finančního trhu, pouze pokud jde o trh s cenými kovy, tj. zlato, stříbro a paládium. Úvěrové trhy jsou trhy, na kterých je obchodováno s úvěry komerčními (úvěry poskytované právnickým osobám) a spotřebními (úvěry poskytované fyzickým osobám). Mezi komerční úvěry je řazen kontokoretní úvěr, eskontní úvěr, negociační úvěr, lombardní úvěr a sanační úvěr. Do spotřebních úvěrů je řazen kontokoretní úvěr, revolvingový úvěr, splátkový úvěr a hypoteční úvěr.

2.3.2 Hypoteční úvěr

Hypoteční úvěr mohou poskytovat pouze banky, které mají od ČNB oprávnění poskytovat hypoteční úvěry. Tyto banky následně vydávají hypoteční zástavní listy (krytý nemovitostmi) s cílem získat finanční prostředky na poskytování hypotečních úvěrů. Splacení hypotečního úvěru včetně všech příslušenství je zajištěno zástavními pravami k nemovitostí. Minimální doba trvání hypotečního úvěru je 5 let a maximální doba je omezena na produktivní věk žadatele. Nejčastěji jsou hypoteční úvěry sjednávány na 20 až 30 let, přičemž průměr je zhruba 22 let. Minimální částka, kterou je banka ochotna půjčit je v ČR 200 000 Kč, ale u Oberbank dokonce 100 000 Kč. Maximální hodnota hypotečního úvěru je omezena pouze LTV, jenž je od 1. dubna 2017 nastavena na maximální výši 90 %. Zároveň jsou bankami více úročeny hypoteční úvěry s hodnotou LTV od 80 % do 90 %, protože se strany ČNB je od 1. dubna 2017 vydáno doporučení, aby celkový objem poskytnutých hypotečních úvěrů s LTV od 80 % do 90 % nebyl vyšší než 15 % (viz úřední sdělení ČNB, část 2.2.1.4). Výšší sazba u těchto hypotečních úvěrů způsobí, že postupně klesne jejich množství, jelikož vysoce úročené hypotéky jsou pro zákazníky méně zajímavé.
2.3.3 Hypoteční trh v ČR

Vývoj na hypotečním trhu je zpracován z tiskových zpráv vydávaných ČNB, Ministerstvem pro místní rozvoj, Hypoteční bankou, společností Partners a serverem hypoindex.cz.

Od nového tisíciletí dochází k velkému nárůstu objemu poskytnutých hypotečních úvěrů, které byly přizpůsobeny potřebám zákazníka. Zatímco předcházející rok byly průměrné úrokové sazby okolo 10,3 %, v roce 2000 došlo k poklesu až na 8,4 %. Další významný vliv na vývoj českého hypotečního trhu měla klesající hranice příjmů pro získání úvěru a posilující konkurence, jež během roku vzrostla o tři hypoteční banky. Systém státní podpory výrazně podněcoval poptávku po hypotečních úvěrech. V tomto období činila státní podpora 4 p. b., díky čemuž bylo úrokové zatížení mnohých hypotečních úvěrů sníženo pod 5 %.

Rostoucí trend v hypotečním bankovnictví pokračoval i v roce 2001, přičemž tento vývoj byl posílen dalším snížením úrokových sazeb na 7% hranici. Důvodem pro snížení úrokových sazeb bylo společně s příznivým vývojem peněz na trhu i opatření České
spořitelny, a.s., vycházející z programu TOP bydlení, v němž byly výrazným způsobem dotovány úrokové sazby. Na základě klesajících úrokových sazeb klesla i státní podpora hypotečních úvěrů na novou výstavbu ze 4 % na 2 %.

Další pokles úrokových sazeb a nová forma státní finanční podpory pro mladé žadatele do 36 let měly za následek, že rok 2002 byl z pohledu počtu i objemu hypotečních úvěrů mimořádně úspěšný. V tomto roce byly na hypoteční trh uvedeny nové produkty, přičemž nejvýznamnější byl hypoteční úvěr poskytnutý do plné výše ceny zástavy (100 % LTV).

V roce 2003 činil meziroční nárůst objemu nových hypotečních úvěrů 57 %. Rostoucí zájem o hypoteční úvěry byl podpořen klesajícími úrokovými sazbami, očekávanými změnami v DPH, obavami ze zdražení nemovitostí po vstupu ČR do EU, zvyšováním reálných mezd a nevyřešenou deregulací našeho. S poklesem úrokových sazeb z hypotečních úvěrů poklesla i státní podpora úvěrů na nové bydlení na 0 p. b. a podpora staršího bydlení na 2 p. b.

Růst na trhu hypoték pokračoval i v roce 2004, kdy meziroční narůst celkového objemu nově poskytnutých hypoték činil 43 %. V prvním pololetí tohoto roku mírně narostla průměrná úroková sazba na 4,5 % a stále rostly reálné mzdy, čímž docházelo k rozšíření okruhu osob schopných pořídit si vlastní nemovitost. Dalším faktorem byla rostoucí nabídka kvalitních nemovitostí, konkurenční boj bank v úrokové politice, inovace hypotečních úvěrů (např. možnost fixace úrokových sazeb v rozmezí od 1 do 30 let) a nově zavedené neúčelové hypotéky. Ke konci roku došlo k poklesu úrokových sazeb, na základě čehož přestala být poskytována státní podpora hypotečních úvěrů na nové bydlení a finanční podpora hypotečních úvěrů na pořizení staršího bydlení pro mladé žadatele do 36 let byla snížena ze dvou na jeden p. b. V tomto roce nabyl platnosti nový zákon č. 190/2004 Sb., o dluhopisech, jenž umožnil bankám použít pohledávky z neúčelově poskytnutých hypoték do krycího bloku hypotečních závazníků, díky čemuž mohly být klientům nabídny neúčelové hypotéky a hypotéky na družstevní bydlení.

Začátkem roku 2008 stále stoupaly objemy poskytnutých hypotečních úvěrů, ale postupem roku dolehl na český hypoteční trh celosvětová krize, jež započala jako americká hypoteční krize. Konec roku byl už velmi slabý a společně s poklesem hypotečních úvěrů začínaly pomalu stagnovat také úrokové sazby.

V letech 2009 a 2010 na český hypoteční trh stále doléhala ekonomická nejistota a celosvětová krize. Téměř u všech bank bylo pozastaveno 100% financování hypotečních úvěrů ze strany bank a byla zastavena většina developerských projektů včetně nových výstaveb.

V roce 2012 byl český hypoteční trh ještě dynamičtější než v předcházejícím roce. Tento rok bylo na hypotečních úvěrech vypůjčeno více než 120 mld. Kč a celkový objem poskytnutých hypotečních úvěrů byl o 3 % vyšší než předchozí rok. Nejvíce si lidé půjčovali na nákup starších nemovitostí v menších obcích a starších bytů ve městech.

Podle dat Ministerstva pro místní rozvoj poskytly banky v roce 2013 občanům přes 92 000 hypotečních úvěrů v celkové hodnotě 149,3 mld. Kč, což bylo o 6 mld. Kč více než v tehdy nejúspěšnějším roce 2007 a o 22 % více než v předcházejícím roce. rekordní objemy byly spojeny s klesajícími úrokovými sazbami, které podle ukazatele Hypoindex byly ve výši 2,95 % a příznivými cenami nemovitostí. Od druhé poloviny roku došlo k mírnému nárůstu úrokových sazeb na 3,06 %.

V roce 2014 pokračoval trend nízkých úrokových sazeb, který ocenili zejména zájemci o vlastní bydlení. Úrokové sazby podle Hypoindexu spadly až na 2,44 %, čehož

2.3.3.1 Nový zákon č. 257/2016 Sb., o spotřebitelském úvěru

Nejdůležitější pravidla a změny, které jsou obsahem nového zákonu č. 257/2016 Sb., o spotřebitelském úvěru, jsou stručně charakterizovány v následujících odstavcích.

Všechny banky musí klienty dostatečně informovat o výpůjční sazbě, poplatcích, roční procentní sazbě nákladů (RPSN), výši splátek a době trvání úvěrů. Klient může do 14 dnů od smlouvy odstoupit bez udání důvodu a nejpozději do 30 dnů je povinen zaplatit jistinu z přijatého spotřebitelského úvěru plus úrok, na který by poskytovateli za dané období vznikl nárok, pokud by k odstoupení od smlouvy nedošlo. Při reklamě o spotřebitelském úvěru musí všechny banky podávat stejné informace, tedy informovat o výpůjční úrokové sazbě, poplatcích, RPSN, výši jednotlivých splátek a době trvání úvěrové smlouvy. Poskytovatel úvěru na bydlení musí všechny své klienty, kteří mají sjednán úvěr na bydlení
s pevnou úrokovou sazbou delší než jeden rok informovat o návrhu nové sazby na další fixační období, a to nejméně tři měsíce před změnou sazby.

V případě úvěrů na bydlení je možné úvěr kdykoli předčasně splatit, přičemž věřitel může nově naučtovat jen poplatek ve výši účelně vynaložených nákladů, které s touto předčasnou splatkou vznikly (max. do výše úroku, které by dlužník zaplatil při splácení do konce původní sjednané splatnosti). V důsledku této změny došlo k výraznému poklesu u poplatků za předčasné splacení. V případě těžké životní situace, jakou je například úmrtí, dlouhodobá nemoc či invalidita manžela, popř. partnera, jež vede k výraznému snížení schopnosti splácet, je možné předčasně splatit úvěr na bydlení bez poplatku. Dále může být nově zcela bez poplatku splacen úvěr na bydlení ve lhůtě tří měsíců od oznámení nové úrokové sazby věřitelem. U předčasné splátky související s prodejem zastavené nemovitosti může být věřitelem naučtován maximálně poplatek 1 % z předčasné splátky (max. 50 000 Kč).

Při sjednávání úvěrů na bydlení je prodloužena lhůta na rozmyšlenou. Předcházející lhůta nebyla zákonem pevně určena a instituce garancovali původní znění smlouvy pouze několik málo dní. Nově je lhůta na rozmyšlenou stanovena na 14 dnů, během kterých musí věřitel garantovat znění návrhu smlouvy, která nesmí být změněna, zrušena ani odvolána. Pokud klient s návrhem smlouvy souhlasí, musí s ním instituce bez zbytečného odkladu uzavřít smlouvu podle sjednaných podmínek.

Tento zákon je platný jen pro nové spotřebitelské úvěry. U úvěrů na bydlení jsou nová pravidla vztahena i na smlouvy sjednané před účinností tohoto zákona, ale v dalším období fixace úrokové sazby. Na úvěry s plovoucí sazbou je zákon vztázen od data účinnosti.

V souvislosti s legislativními změnami je s rokem 2017 spojen růst úrokových sazeb a zpřísnění podmínek při poskytování hypotečních úvěrů. V únoru 2017 došlo k růstu úrokových sazeb na 1,87 %, ale zájemců o hypoteční úvěry přibývalo. Lidé stále využívali toho, že banky poskytovaly hypoteční úvěry do výše 95 % LTV, což na základě vydaného doporučení ČNB trvalo pouze do 1. dubna 2017. Dále jsou snahy využít dosavadních velmi nízkých úrokových sazeb, protože se zpřísněním pravidel jsou spojeny i rostoucí náklady bank, což se v konečném důsledku promítne do nákladů žadatelů o hypoteční úvěry. V následujícím období je očekáváno ochlazení vývoje a postupný růst úrokových sazeb a celkových nákladů na úvěry na bydlení.
3 Popis vybraných metod ekonometrické analýzy

Ekonometrii lze charakterizovat jako vědní disciplínu, ve které jsou pomocí nástrojů kvantitativní a kvalitativní analýzy ověřovány závěry ekonomických teorií specifikované matematickými výrazovými prostředky.

Termín finanční ekonometrie je dnes používán pro kvantitativní analýzu finančních dat jak na mikroekonomické, tak i na makroekonomické úrovni. V ekonometrické analýze by měly být využívány důvěryhodné zdroje, jako jsou např. profesionální finanční agentury, nadnárodní finanční instituce, statistické úřady, centrální banky, finanční burzy jednotlivých zemí atd.

Hančlová (2012) uvádí, že celý proces klasického ekonometrického modelování lze rozdělit do pěti navazujících kroků:

- formulace modelu,
- sběr a analýza dat,
- odhad výběrového modelu,
- verifikace modelu a
- využití modelu.

V následujících pěti částech této kapitoly jsou postupně charakterizovány základní etapy ekonometrické analýzy, které jsou použity pro odhad a závěrečnou predikci modelu. Nejdříve je definována ekonomická, matematická a ekonometrická formulace modelu. Poté je popsána časová řada, dekompozice dat, analýza odlehlých hodnot, analýza extrémních hodnot a transformace neupravených dat. V dalším kroku je objasněn odhad parametrů modelu, princip korelace, způsob sestavení lineárního regresního modelu, výpočet koeficientu determinace a postup při statistické, ekonometrické i ekonomické verifikaci modelu. V poslední části této kapitoly jsou charakterizovány možné přístupy k predikci modelu.

8 Statistické zpracování finančních dat s použitím dostupných ekonomických informací a následném zhodnocení získaných výsledků.
3.1 Formulace modelu

Formulace modelu je výchozím krokem celé analýzy, která je složena ze tří částí, a to z ekonomické, matematické a ekonometrické formulace modelu.

3.1.1 Ekonomická formulace modelu

U ekonomické formulace modelu je nutné nejdříve přesně stanovit předmět zkoumání a klasifikovat jednotlivé ekonomické veličiny. Následně jsou popsány teoreticky předpokládané vazby a vztahy mezi veličinami v modelovaném systému. Poslední fáze této části spočívá ve formulaci výchozí ekonomické hypotézy

\[y_t = f(x_{1t}, x_{2t}, \ldots, x_{nt}) \] (3.1)

a vysvětlované proměnné \(y_t \), která je závislá na vysvětlujících proměnných \(x_{1t}, x_{2t}, \ldots, x_{nt} \). Obecně platí, že s přibývajícím počtem vysvětlujících proměnných je model přesnější. Vždy je však potřeba do modelu zařadit proměnné, které mají svůj nezastupitelný význam. Výsledkem této etapy je vymezení ekonomického modelu, kterým lze adekvátně popsat podstata zkoumaného problému.

3.1.2 Matematická formulace modelu

Matematická formulace modelu slouží k převedení ekonomických hypotéz do formy matematických deterministických modelů a je rozdělena do dvou částí. V první části je důležité vymezit klíčové proměnné modelu a transformovat ekonomický model do analytické formy funkčního předpisu. Druhá část spočívá ve stanovení očekávaných pozitivních nebo negativních vztahů, popř. dalších omezení pro parametry modelu. Pokud jsou vztahy mezi proměnnými zapsány formou funkčního předpisu nejdále se již o ekonomickou, ale o matematickou formulaci modelu, kterou lze obecně zapsat jako

\[y_t = \beta_1 + \beta_2 \cdot x_t, \] (3.2)

kde \(y_t \) je hodnota závislé (vysvětlované, endogenní) proměnné, \(x_t \) hodnota nezávislé (vysvětlující, exogenní) proměnné v čase \(t \) a \(\beta_1, \beta_2 \) jsou neznámé parametry modelu.

3.1.3 Ekonometrická formulace modelu

V rámci ekonometrické formulace modelu je původní matematický model rozšířen o náhodnou složku (chybu, reziduální složku). Zahnutí residua do modelu je velmi důležité,
jelikož slouží k zachycení vlivu všech chybějících vysvětlujících proměnných, nepřesné specifikace modelu, nepřesností při měření vstupních proměnných atd. Z původního deterministického modelu vzniká po zahrnutí náhodné složky \(\varepsilon_t \) model stochastický, jehož obecná podoba je podle Hančlová (2012)

\[
y_t = \beta_1 + \beta_2 \cdot x_t + \varepsilon_t.
\] (3.3)

Počáteční odhad zkoumaného modelu je proveden s ohledem na základní ekonomické teorie

\[
\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 \cdot x_t + \hat{\varepsilon}_t,
\] (3.4)

přičemž vzájemné vztahy mezi proměnnými mohou být negativní \((\hat{\beta}_2 < 0)\) nebo pozitivní \((\hat{\beta}_2 > 0)\). Takto sestrojený model je následně použit k analýze dat a predikci budoucích hodnot.

3.2 Sběr a analýza dat

Existuje velké množství informačních zdrojů a databází, ale je důležité vždy vycházet z důvěryhodných zdrojů. Databáze jsou vybírány vždy na základě oblasti zaměření ekonometrického modelování. Jako důvěryhodné zdroje mohou být využity databáze národních a nadnárodních organizací, jako je např. Eurostat, Organizace pro hospodářskou spolupráci a rozvoj (OECD), Evropské centrální banky (ECB), ČNB, Českého statistického úřadu (ČSÚ) a další.

Nejčastěji jsou zkoumané časové řady obecně popsány. Následně je charakterizován proces dekompozice dat, analýzy odlehlých, popř. extrémních hodnot, a nakonec jsou uvedeny způsoby transformace časových řad.

3.2.1 Popis dat

Každá veličina je vymezena časově, prostorově a obsahově. V rámci ekonometrické analýzy tak může být vycházeno z modelů zahrnujících pouze časová data (časová analýza), nebo průřezová data (průřezová analýza), popř. panelová data (analýza panelových dat).

V diplomové práci je pracováno s časovými řadami, tj. hodnoty určité veličiny pozorované v jistém časovém intervalu s danou frekvencí záznamu. Pro účely ekonometrické analýzy je důležité, aby měly časové řady konstantní frekvenci pozorování, která je chronologicky uspořádána v čase.
Součástí popisu dat je stručné shrnutí základních údajů, k čemuž slouží výpočet deskriptivní statistiky. Poté jsou pozorovány vlastnosti pomocí histogramů a je charakterizován vývoj dat v čase pomocí liniových grafů.

3.2.2 Dekompozice časových řad

Dekompozice časových řad je využívána tehdy, když je u časové řady vykazován sezónní trend. Podle podmínek pro odhad parametrů pomocí metody nejmenších čtverců je třeba sezónnost odstranit, popř. výrazně eliminovat. Dekompozice slouží k rozložení časové řady na složku systematickou, trendovou, cyklickou, náhodnou a sezónní, o kterou je časová řada očištěna.

Trendové složky slouží k zachycení dlouhodobých tendencí ve vývoji časových řad. Periodické změny v časových řádách jsou zachyceny ve složkách sezónních. Tyto změny se zpravidla objevují v rámci určitých období roku a dochází k jejich každoročnímu opakování např. v případě HDP z důvodu sezónních prací. Cyklickými složkami jsou vyjádřeny krátkodobé fluktuace kolem dlouhodobého trendu. Poslední náhodné složky modelu by vždy měly vykazovat konstantní rozptyl, normální rozdělení pravděpodobnosti s nulovou střední hodnotou a vzájemnou nekorelovatelnost.

Podle způsobu rozkladu časové řady jsou rozlišovány dekompoziční metody:

- aditivní,
- multiplikativní a
- smíšené.

Použití dané metody závisí na charakteru zkoumané časové řady.

Aditivní dekompozice je použita v případě, že variabilita hodnot časové řady je přibližně konstantní v čase. Tento typ dekompozice je založen na předpokladu, že zkoumaná proměnná je součtem jednotlivých komponent, tedy

\[y_t = T_t + S_t + C_t + \varepsilon_t, \]

(3.5) kde \(y_t \) je původní časová řada, \(T_t \) trendová složka, \(S_t \) sezónní složka, \(C_t \) cyklická složka a \(\varepsilon_t \) náhodná složka. Všechny proměnné jsou definovány v čase \(t \). Každá ze složek je uváděna v absolutní hodnotě a měřena v jednotkách původní řady.
Multiplikativní dekompozice je aplikována při rostoucím nebo neměnném vývoji variability hodnot v čase. V tomto případě je časová řada rozložena na součin jednotlivých složek, tedy

\[y_t = T_t \cdot S_t \cdot C_t \cdot \varepsilon_t. \]

(3.6)

Při použití této metody je trendová složka uváděna ve stejných jednotkách jako původní časová řada. Naopak složka sezónní, cyklická a náhodná je považována za bezrozměrný koeficient v relativním vyjádření.

Smišená dekompozice je kombinací obou zmíněných přístupů, tedy

\[y_t = T_t \cdot S_t \cdot C_t + \varepsilon_t. \]

(3.7)

Na základě provedené dekompozice je získána sezónně očištěná časová řada, se kterou je dále pracováno.

3.2.3 Analýza odlehlých a extrémních hodnot

Odlehlé a extrémní hodnoty je možné identifikovat s využitím diagramu box-plot\(^9\). Analyzovaná data jsou vzestupně seřazena a na základě kvartilového rozpětí zakreslena pomocí box-plotu. Dále jsou do grafu zaneseny vnitřní a vnější hradby, které jsou vypočteny dle vztahu

\[
\begin{align*}
\text{Dolní vnitřní hradba} &= x_{0.25} - 1.5q \\
\text{Horní vnitřní hradba} &= x_{0.75} + 1.5q \\
\text{Dolní vnější hradba} &= x_{0.25} - 3q \\
\text{Horní vnější hradba} &= x_{0.75} + 3q,
\end{align*}
\]

(3.8)

kde \(x_{0.25}\) představuje dolní kvartil, \(x_{0.75}\) horní kvartil a \(q\) kvartilové rozpětí. Medián \(x_{0.5}\) je hodnota, jež dělí seřazenou řadu na dvě stejně početné poloviny.

Ty hodnoty, které jsou zachyceny pod dolním nebo nad horním kvartilem ve větší vzdálenosti než \(1.5\cdot(q_{0.75} - q_{0.25})\) jsou definovány jako odlehlé hodnoty. Pokud je vzdálenost větší než \(3\cdot(q_{0.75} - q_{0.25})\) jedná se o extrémní hodnoty. Hlavní rozdíl spočívá v tom, že extrémní hodnoty časových řad je potřeba v modelu nahradit, kdežto odlehlé hodnoty jsou nahrazeny pouze v případě, když výrazně ovlivňují výsledky odhadu.

\(^9\) Jedná se o grafickou analýzu prostřednictvím krabicového diagramu.
3.2.4 Transformace časových řad

Transformace je aplikována v případě nestacionárních časových řad, pro které je typický nekonstantní vývoj rozptylu a střední hodnoty. Tento vývoj lze pozorovat například v grafickém vyjádření, kde nestacionární časové řady vykazují rostoucí nebo klesající trend. Odstranění trendu může být provedeno:

- zavedením umělé proměnné,
- transformací dat diferencí a
- transformací dat růstem.

Umělá proměnná je zavedena do zkoumaného lineárního regresního modelu v případě, že je potřeba zahrnout určitý zlom ve vývoji časové řady, např. výrazný výkyv před válkou, před krizí, po krizi apod.

Transformace diferencí je provedena jako absolutní změna proměnné

\[\text{diff}_t y_t = y_t - y_{t-1}, \]

(3.9)

kde \(y_t \) představuje sledovanou proměnnou v čase \(t \), \(\text{diff}_t y_t \) první diferenci sledované proměnné v čase \(t \) a \(y_{t-1} \) proměnnou zpožděnou o jedno období (což může být čtvrtletí, měsíc ale také rok). Zejména u dat s větší frekvencí jsou často využívány meziroční diference. Úprava dat na základě diference funguje tehdy, když je v časové řadě vykazovan lineární trend. Transformace dat pomocí růstu je založena na relativní změně proměnné

\[\text{growth}_t y_t = \frac{y_t - y_{t-1}}{y_{t-1}}, \]

(3.10)

kde \(\text{growth}_t y_t \) je růst sledované proměnné v čase \(t \). V případě, že se nepodaří odstranit nestacionaritu je možné alespoň zmírnit její dopad na výsledky odhadu pomocí logaritmu

\[y_t \rightarrow \ln y_t. \]

(3.11)

3.3 Odhady parametrů modelu

Další fáze spočívá v odhadu parametrů modelu. V první části této podkapitoly jsou charakterizovány postupy, které jsou využívány k vyčíslení vzájemně závislosti mezi vysvětlovanou a vysvětujícími proměnnými. Druhá část je věnována korelační analýze, popisu odhadu lineárního regresního modelu a koeficientu determinace.
3.3.1 Korelační analýza

Vzájemný vztah mezi veličinami je zjišťován na základě korelační analýzy. Pokud je mezi dvěma veličinami potvrzena statisticky významná korelace, je zároveň potvrzena jejich vzájemná závislost.

V situaci, kdy je mezi dvěma nezávislými veličinami vypočtena silná korelace, je vhodné jednu proměnnou ze specifikace modelu vyloučit, aby došlo k zamezení duplicity informací, které by zkreslovaly výsledný model (podrobněji vysvětleno v části 3.4.2.3 věnované Multikolinearitě). Opačná situace však nastává ve vztahu mezi závislou a nezávislou proměnnou, kde je naopak silná závislost vyžadována.

Křížovou korelací lze ověřit, zda je pracováno s veličinami ve správném čase. Nejčastěji je křížová korelace analyzována graficky. Ihned po vykreslení křížové korelace je zřejmé, v jakém čase je mezi závislou a nezávislou proměnnou nejvyšší stupeň korelace. Pakliže není vysoká hodnota vykazována v čase 0, je vhodné příslušnou proměnnou časově posunout a použít délku zpoždění, pro kterou je identifikována vysoká korelace.

3.3.2 Odhad lineárního regresního modelu

Samotná regresní analýza je důležitým ekonometrickým nástrojem, který je využíván pro kvantitativní popis vztahu mezi ekonomickými veličinami (proměnnými), přičemž hlavním úkolem je vysvětlit změny hodnot závislé proměnné změnami hodnot nezávislých proměnných. Obecný tvar lineární regresní rovnice lze dle Cipra (2013) zapsat jako

\[\hat{Y}_t = \hat{\beta}_1 + \hat{\beta}_2 \cdot x_{t2} + \ldots + \hat{\beta}_m \cdot x_{tn} + \hat{\epsilon}_t, \]

(3.12)

kde \(\hat{Y}_t \) je odhad hodnoty závislé proměnné v čase \(t \), \(x_{t2}, \ldots, x_{tn} \) jsou hodnoty nezávislých proměnných v čase \(t \) a \(\hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_m \) jsou odhadnuté parametry modelu. „Vysvětlující proměnná \(x_1 \) má speciální postavení, neboť její hodnota je stále rovna jedné (\(x_1 \equiv 1 \)), takže se často ani do modelu formálně nezapisuje. Jejím úkolem v modelu je modelovat s pomocí parametru \(\hat{\beta}_1 \) tzv. absolutní člen, jak uvádí Cipra (2013, s. 33).“ Pomocí parametrů \(\hat{\beta}_2, \ldots, \hat{\beta}_m \) je, za předpokladu ceteris paribus, vyjádřena změna závislé proměnné \(Y_t \) při změně nezávislé proměnné \(x_n \) o jednotku. Odhady jednotlivých parametrů lze stanovit pomocí různých typů metod. Cipra (2013) uvádí, že mezi základní metody patří:

- metoda nejmenších čtverců,
- metoda maximální věrohodnosti a
• zobecněná metoda momentů.

V rámci diplomové práce je použита **metoda nejmenších čtverců** Sq, jenž spočívá v nalezení nejmenší kvadratické odchylky mezi zjištěnými a odhadnutými hodnotami. Parametry jsou hledány za předpokladu minimalizace součtu druhých mocnin vertikálních vzdáleností hodnot závislé proměnné od regresní přímky a současně je dbáno na co nejlepší proložení přímky množinou pozorovaných bodů, což lze matematicky zapsat jako

$$Sq = \sum_{i=1}^{r} \left[Y_i - \left(\beta_1 + \beta_2 \cdot x_{i2} + \ldots + \beta_m \cdot x_{im} \right) \right]^2. \quad (3.13)$$

• regresní parametry nejsou nenáhodné,
• regresní parametry nejsou korelované s reziduální složkou ve stejném čase,
• střední hodnota reziduální složky je rovna nule,
• reziduální složky podléhají normálnímu rozdělení pravděpodobnosti,
• rozptyl reziduální složky je konstantní, konečný (výskyt homoskedasticity),
• reziduální složky jsou navzájem nekorelované (neexistence autokorelace),
• mezi vysvětlujícími proměnnými není dokonalý lineární vztah (neexistence multikolinearity) a
• model je správně specifikován.

3.3.3 Koeficient determinace

Prostřednictvím koeficientu determinace je vyjádřeno, jaký podíl variability v naměřených datech lze vysvětlit odhadnutým regresním modelem. Hodnota koeficientu determinace je vymezena v intervalu 0 až 1 a platí, že se zvyšující se hodnotou koeficientu roste také vypovídací schopnost daného regresního modelu.

Samotný výpočet koeficientu determinace podle Cipra (2013) spočívá v několika krocích. Nejdříve je vypočten úplný součet čtverců (TSS), který lze zapsat jako

$$TSS = \sum_{i=1}^{n} \left(Y_i - \bar{Y} \right)^2, \quad (3.14)$$

neboli součet čtverců rozdílů pozorované hodnoty závislé proměnné Y_i od průměrné hodnoty \bar{Y}.

43
Poté je TSS rozložen na reziduální součet čtverců (RSS) a vysvětlený součet čtverců (ESS). RSS\(^{10}\) je vypočten jako

\[
RSS =
\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2, \tag{3.15}
\]

neboli součet čtverců rozdílů pozorované hodnoty vysvětlované proměnné od odhadnuté hodnoty \(\hat{Y}_i\) a ESS je stanoven jako

\[
ESS =
\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2, \tag{3.16}
\]

neboli součet čtverců rozdílů odhadnuté závislé proměnné od průměrné hodnoty.

V posledním kroku je vypočten koeficient determinace \(R^2\), pro který platí, že

\[
R^2 = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}. \tag{3.17}
\]

3.4 Verifikace modelu

V této etapě je popsána podstata verifikace odhadnutého ekonometrického modelu. Ověření výchozích předpokladů modelu je spjato s jeho aplikací v praxi. Model je verifikován po stránce statistické, ekonometrické a ekonomické. Verifikace je důležitou částí analýzy, kde dochází k ověření statistické významnosti jednotlivých parametrů, významnosti modelu jako celku a vlastností náhodné složky. Model by neměl být v praxi aplikován, pokud nejsou splněny předpoklady pro jeho správné použití.

3.4.1 Statistická verifikace

Statistická verifikace slouží k posouzení statistické realnosti odhadů jednotlivých parametrů a celého modelu. Podstatou verifikace jsou testy statistické významnosti, přičemž nejčastěji je používán studentův t-test a F-test. Ověření statistické významnosti parametrů, popř. modelu, vychází z testování statistických hypotéz, což jsou domněnky o vlastnostech veličin, které jsou buď přijaty, nebo vyvráceny. Rozhodnutí, jestli je daná hypotéza vyvrácena nebo přijata, je uskutečněno na základě kritických hodnot t-statistiky, F-statistiky nebo p-hodnoty (sig.).

\(^{10}\) Platí, že lineární regresní model je sestaven tak, aby byl tento ukazatel minimalizován.
První krok statistické verifikace spočívá ve formulaci základní nulové hypotézy \((H_0)\) a alternativní hypotézy \((H_A)\). Matematická formulace hypotéz pro ověření významnosti příslušného parametru lze zapsat jako

\[
\begin{align*}
H_0: \beta_i &= 0, \\
H_A: \beta_i &\neq 0,
\end{align*}
\]

(3.18)

přičemž, pokud platí \(H_0\), pak je parametr \(\beta_i\) statisticky nevýznamný na dané hladině významnosti a jestliže naopak platí \(H_A\), pak je parametr \(\beta_i\) statisticky významný na dané hladině významnosti.

Druhým krokem je volba hladiny významnosti \(\alpha\), jenž slouží k vyjádření pravděpodobnosti, s jakou může dojít k nesprávnému zamítnutí \(H_0\) a platí, že čím menší je stanovena hladina významnosti, tím přesnější je konečný model. Přesným opakem hladiny významnosti je stupeň spolehlivosti

\[
1 - \alpha,
\]

(3.19)

kterým je stanoveno, s jakou pravděpodobností dojde ke správnému zamítnutí \(H_0\). Hladina významnosti je vždy volena na základě druhu oboru, přičemž v diplomové práci se pracováno s 5% hladinou významnosti, tzn. s 95% stupněm (intervalem) spolehlivosti. Jinými slovy lze říci, že s 95% pravděpodobností došlo k správnému zamítnutí, popř. přijetí \(H_0\), nebo naopak s pravděpodobností 5% došlo k chybnému rozhodnutí o hladině \(H_0\). Stupeň spolehlivosti představuje intervalové rozptětí kolem (střední) hodnoty, který je zachycen jako obostranný test v Obr. 3.1 a jednostranný test v Obr. 3.2.

Třetí krok spočívá v nalezení kritické hodnoty, výpočtu příslušné statistiky a jejich porovnání. Nejdříve je stanovena kritická hodnota u t-statistiky \(t_{krit}\), kterou lze najít dle stupňů volnosti \(df\) a zvolené hladiny významnosti \(\alpha\) v tabulce kritických hodnot nebo pomocí funkce \(TINV(\alpha; df)\) v Microsoft Excel (dále jen MS Excel). Následně je za předpokladu \(H_0\), proveden výpočet testovacího kritéria

\[
t_{vyp} = \frac{\hat{\beta}_i - \mu_i}{\hat{\sigma}_{\beta_i}} = \frac{\hat{\beta}_i - 0}{\hat{\sigma}_{\beta_i}} = \frac{\hat{\beta}_i}{\hat{\sigma}_{\beta_i}} \sim t(df),
\]

(3.20)

kde \(\hat{\beta}_i\) je odhadnutá hodnota parametru, \(\mu_i\) střední hodnota parametru, která je pro studentovo rozdělení rovna nule, \(\hat{\sigma}_{\beta_i}\) představuje odhad směrodatné odchylky parametru, \(t_{df}\) studentovo rozdělení pravděpodobnosti, \(n\) počet pozorování a \(k\) počet parametrů. V tomto
případě jsou stupně volnosti vypočítány jako rozdíl mezi počtem pozorování a počtem parametrů modelu. V závěrečném čtvrtém kroku je na základě rozhodovacího pravidla porovnána kritická hodnota statistiky s vypočítanou, a když platí vztah

\[|t_{vp}| > |t_{krit}|, \]

je \(H_0 \) zamítnuta na hladině významnosti \(\alpha \) a parametr \(\beta_i \) je statisticky významný. Ověření správnosti výpočtu může být provedeno pomocí vypočítané p-hodnoty \(t_{vyp} \). Levým dolním indexem je v případě p-hodnoty značena testová statistika, se kterou je počítáno. Výpočet lze provést pomocí funkce \(TDIST(t_{vyp}, df, 2) \) v MS Excel. V tomto případě je na základě rozhodovacího pravidla porovnána vypočítaná p-hodnota s předem stanovenou hladinou významnosti \(\alpha \) a v případě, že

\[t_{vyp} < \alpha, \]

je hypotéza \(H_0 \) zamítnuta. Tento postup je následně proveden pro všechny parametry modelu, které jsou buď takto přijaty, nebo zamítnuty. Grafické zobrazení pravidla t-statistiky je zachyceno v Grafu 3.1.

Graf 3.1 Grafické zobrazení rozhodovacího pravidla t-statistiky

![Grafik t-statistiky](image)

Ve čtvrtém kroku je provedena celková kontrola významnosti modelu pomocí výpočtu F-statistiky. Zpočátku je nutné formulovat hypotézy, které jsou pro vicenásobný regresní model následující

\[
H_0 : \beta_2 = \beta_3 = \ldots = \beta_n = 0 \\
H_A : \beta_2 \neq 0 \lor \beta_3 \neq 0 \lor \ldots = \beta_n \neq 0.
\]
V případě H_0 je model statisticky nevýznamný, protože jsou všechny koeficienty simultánně nulové. Pomocí H_A je naopak vyjádřeno, že alespoň jeden koeficient je nenulový, tj. model je statisticky významný. Stále je počítáno s hladinou významnosti, která je stanovena již na počátku testování, viz stupeň spolehlivosti 3.19.

V pátém kroku je porovnána kritická hodnota F-statistiky a vypočítaná hodnota F-statistiky. Kritickou hodnotu F-statistiky F_{krit} lze opět nalézt v tabulce kritických hodnot, nebo podle funkce $FINV(\alpha, df_1, df_2)$ v MS Excel a vypočítaná hodnota F-statistiky F_{vyp} je stanovena jako

$$F_{vyp} = \frac{ESS/df_1}{RSS/df_2} = \frac{ESS/(k-1)}{RSS/(n-k)} \sim F(df_1, df_2).$$

(3.24)

I nyní je rozhodnutí řízeno rozhodovacím pravidlem. Pokud je

$$F_{vyp} > F_{krit},$$

(3.25)
dochází k zamítnutí H_0 na zvolené hladině významnosti α. Ověření správnosti výpočtu může být také provedeno pomocí p-hodnoty $F_{F_{vyp}}$, která je vypočtena s využitím funkce $FDIST(F_{vyp}; df_1, df_2)$ v MS Excel. Následně je porovnána předem stanovená a vypočtená hladina významnosti, a když

$$F_{F_{vyp}} < \alpha,$$

(3.26)

je zamítnuta H_0 a lineární regresní model je statisticky významný. Grafické zobrazení testování statistické významnosti regresního modelu je zachyceno v Grafu 3.2.

Graf 3.2 Testování statistické významnosti regresního modelu
Ve výše zmíněném postupu je nejdříve pracováno s oboustranným a následně s jednostranným testem. Hlavní rozdíl v těchto testech spočívá v definování $H_α$. Pro lepší objasnění je vycházíno ze vztahu 3.18 a 3.23, kde je H_0 definována jako nulová. V oboustranných testech není při definování $H_α$ brán zřetel na znaménko, viz vztah 3.18. U jednostranných testů je ale $H_α$ definována pouze jako větší nebo pouze jako menší než nula. Jelikož smysl výše zmíněného F-testu spočívá v ověření, zda má model jako celkem smysl (vypovídající hodnota celého modelu je větší než nula, tzn. $H_α: R^2 > 0$), nebo nemá smysl (vypovídající hodnota celého modelu je nulová, tzn. $H_0: R^2 \approx 0$) je v tomto případě použit právě jednostranný F-test.

3.4.2 Ekonometrická verifikace

Podstatou ekonometrické verifikace je ověření základních předpokladů, které musí být splněny, aby mohla být aplikována metoda nejmenších čtverců. Adamec, Střelec, Hampel (2014) uvádí, že pokud nejsou plněny předpoklady pro aplikaci odhadovaného postupu, mohou být dle prostřednictví odhadnutého modelu produkované nereálné výsledky. Postupně je popsáno testování autokorelace, heteroskedasticity a multikolinearity, které by se neměly v modelu vyskytovat. V poslední části je stručně charakterizováno testování správné specifikace modelu a normálního rozdělení reziduální složky.

3.4.2.1 Autokorelace

Autokorelace je sériová závislosti reziduálních složek vysvětlované veličiny, k níž dochází tehdy, když je reziduální složka korelována se svými zpožděnými a budoucími hodnotami.

Jedna z příčin autokorelace je, že většina údajů časových řad ekonomických veličin vykazuje setrvačnost, tj. pozorování za několik po sobě jdoucích obdobích jsou závislá. Dalším důvodem může být nevhodná specifikace matematické formy modelu, např. vynecháním důležité proměnné nebo zahrnutím chyb měření vysvětlované proměnné do náhodné složky. Častý výskyt autokorelace je také u modelů, jež jsou sestrojeny na základě dat obsahujících zprůměrované, vyrovnané, interpolované či extrapolované údaje, tedy v případech, když je v modelu obsažen systematicky se měnící faktor. Přítomnost autokorelace v modelu lze ověřit pomocí grafických i analytických testů. Mezi grafické testy jsou dle Hančlová (2012) řazeny:

• vývoj standardizovaných reziduí v čase pomocí liniového grafu,
• autokorelační funkce standardizovaných reziduí (ACF) a
• parcíální autokorelační funkce (PACF).

Grafické zobrazení standardizovaných reziduí v čase slouží k testování, zda je rozložení hodnot zcela náhodné. Nejdříve je zobrazen liniový graf a následně je vytvořeno pásmo 95% konfidenčního intervalu v rozpětí $(-1.96;1.96)$, přičemž 95 % hodnot by mělo být rozprostřeno pouze v tomto intervalu.

Testem ACF je ověřována přítomnost sériové závislosti o jedno nebo více zpoždění až do n-tého řádu, a to včetně nepřímé autokorelace.

Sériová závislost přímo řádu n je zjišťována pomocí testu PACF. Pomocí ACF exponenciálně klesající lze určit, od jakého řádu je zpoždění významné a PACF pak slouží k definování individuálních zpoždění, která se na autokorelaci podílí.

Další způsob, kterým lze detekovat autokorelaci prvního řádu, spočívá v sestrojení bodového diagramu. V tomto diagramu je časová řada reziduální složky závislá proměnná a časová řada reziduální složky zpožděné o jedno období nezávislá proměnná. Přítomnost autokorelace prvního řádu je potvrzena v případě, že je mezi rezidui patrný vzájemný vztah. Pokud jsou ovšem rezidua náhodně rozmístěna, není v modelu potvrzena autokorelace prvního řádu.

Nejčastěji používaná analytická metoda zkoumání autokorelace je Durbin Watsonův (DW) test prvního řádu. U tohoto testu jsou stanoveny následující hypotézy

$$
H_0: \rho = 0 \\
H_A: \rho \neq 0,
$$

kde ρ představuje vzájemnou závislost mezi standardizovanými reziduí v modelu. H_0 je vyjádřena absence autokorelace v modelu, tj. nulová závislost mezi reziduí v čase a H_A je vyjádřena přítomnost autokorelace v modelu, tj. výskyt vzájemné závislosti mezi reziduí v čase. DW testová statistika může být pro velký výběr dat podle Cipra (2013) vypočtena pomocí vztahu

$$
d = 2(1 - \hat{\rho}),
$$

11 Intervalový odhad parametru s danou pravděpodobností.
kde d představuje hodnotu DW statistiky a $\hat{\rho}$ odhad vzájemné závislosti standardizovaných reziduí, který je vypočten ve statistickém či ekonometrickém softwaru. Následně je z tabulky kritických hodnot DW zjištěna dolní hranice konfidenčního intervalu d_L a horní hranice konfidenčního intervalu d_U. Nakonec jsou hodnoty porovnány, a jestli platí, že

$$d < d_U \lor d > 4 \cdot d_L,$$

je H_0 zamítnuta na zvolené hladině spolehlivosti. Autokorelace prvního řádu lze vyvrátit tehdy, když je d přibližně rovna hodnotě 2. U d, která je v intervalu $(d_L, d_U) \lor (4-d_U, 4-d_L)$ nelze jednoznačně rozhodnout, zda se v daném modelu autokorelace prvního řádu vyskytuje a když je vypočtená hodnota větší než hranice konfidenčního intervalu lze hovořit o prokazatelném výskytu autokorelace prvního řádu. Grafické zobrazení testování autokorelace je zachyceno v Grafu 3.3.

Graf 3.3 Testování autokorelace

V situaci, kdy je v modelu zakomponována také zpožděná proměnná, nemůže být k ověření přítomnosti autokorelace použit DW test prvního řádu, ale je aplikována modifikace tohoto testu tzv. DW modifikovaný asymptotický test. U tohoto testu jsou definovány hypotézy na základě vztahu 3.27 a dle Hančlová (2012) je počítána h-statistika

$$h = \left(1-0.5 \cdot d\right) \cdot \sqrt{\frac{n}{1-n \cdot \hat{\sigma}_2 \cdot \hat{\rho}_{1,1}}} \sim N(0,1),$$

kde $\hat{\sigma}_2$ je odhad rozptylu u zpožděné proměnné. Nakonec je porovnána vypočítaná h-statistika s hranicí konfidenčního intervalu, a když platí, že
je zamítnuta H_0 na hladině významnosti 5 %.

V případě, že je zjištěna autokorelace prvního řádu přistupuje se automaticky k jejímu odstranění. Hančlová (2012) zmiňuje tři možné způsoby, kterými lze zmírnit či úplně odstranit autokorelací. Tyto způsoby spočívají v:

- přidání trendové proměnné,
- přidání zpožděné proměnné a
- Cochrane-Orcuttově metodě.

Postup, který spočívá v přidání trendové proměnné, je jednoznačný. Do příslušného modelu je mezi nezávislé proměnné zakomponována taktéž trendová proměnná.

Přidání zpožděné proměnné je trochu složitější, protože je třeba otestovat, jaká proměnná by měla být ideálně zpožděná. Vhodné je sestavit všechny možné varianty modelu, které jsou pomocí upraveného koeficientu determinace navzájem srovnány, a z nich je vybrána právě ta nejlepší varianta.

$$
\rho \bar{Y}_{t-1} = \rho \beta_1 + \rho \beta_2 \cdot x_{2t-1} + \ldots + \rho \beta_n \cdot x_{mt-1} + \rho \varepsilon_{t-1},
$$

(3.32)
a následně jsou tyto rovnice od sebe odečteny a upraveny do vztahu

$$
Y_t - \rho \bar{Y}_{t-1} = \beta_1 (1 - \rho) + \beta_2 (x_2 - \rho \varepsilon_{2t-1}) + \ldots + \beta_n (x_n - \rho \varepsilon_{mt-1}) + \varepsilon_t - \rho \varepsilon_{t-1}.
$$

(3.33)

Nakonec je rovnice 3.33 z důvodu lepší interpretace transformována do podoby

$$
Y_t^* = \beta_1^* + \beta_2^* \cdot x_{2t}^* + \ldots + \beta_n^* \cdot x_{nt}^* + \varepsilon_t^*,
$$

(3.34)
přičemž platí, že rovnice 3.33 a 3.34 jsou si rovny. U rovnice 3.33 došlo pouze k substituci příslušných vztahů hvězdičkami např. $Y_t^* = Y_t - \rho Y_{t-1}^*$.

Všechny výše zmiňované transformace je vhodné porovnat a vybrat nejlepší variantu. Vhodné je volit model s nejvyšší hodnotou koeficientu determinace, u kterého jsou zároveň naplněny základní předpoklady modelu a výchozí ekonomické předpoklady.
3.4.2.2 Heteroskedasticita

Další negativní vlastnost, která je ověřována pomocí testů, je heteroskedasticita, tj. pro model typický měnící se rozptyl residuí. Cílem je ovšem opačná situace, tedy výskyt homoskedasticity (konstantního rozptylu náhodné složky). Hančlová (2012) uvádí, že nejčastější příčiny heteroskedasticity spočívají ve výskytu odlehlých pozorování, chybění specifikace modelu, chyb při měření a nevhodné transformaci dat. Tento problém je spojen zejména s modely, jež jsou sestaveny z průřezových dat, ale může se objevit i v modelech časových řad. Testování heteroskedasticity je prováděno prostřednictvím grafů i analytických testů.

Při grafických testech jsou do grafu zaneseny druhé mocniny standardizované chyby v čase. Dále je do grafu zanesena horizontální linie, která leží v úrovni $1,96^2$ (pokud je počítáno na 5% hladině významnosti). Tuto hranici konfidenčního intervalu může v případě předpokladu homoskedasticity překročit maximálně 5 % pozorování, přičemž rozložení kvadratických reziduí by mělo být náhodné.

$$\hat{\varepsilon}_t^2 = \alpha_1 + \alpha_2 \cdot x_{t2} + \ldots + \alpha_n \cdot x_{tn} + \alpha_{n+1} \cdot x_{t2}^2 + \ldots + \alpha_{2n} \cdot x_{tn}^2 + \alpha_{2n+1} \cdot x_{t2} \cdot x_{tn},$$ (3.35)

který lze rozdělit na část původního modelu, čtverce vysvětlujících proměnných a kombinaci všech možných dvojic, které lze z proměnných vytvořit. V tomto modelu představuje α_i koeficient citlivosti a $\hat{\varepsilon}_t^2$ kvadratickou hodnotu reziduální složky. Poté jsou formulovány hypotézy

$$H_0 : \alpha_2 = \alpha_n = \ldots = \alpha_{2n+1} = 0$$
$$H_A : \alpha_2 \neq 0 \lor \ldots \lor \alpha_{2n+1} \neq 0,$$ (3.36)

přičemž H_0 předpokládá homoskedasticitu a H_A heteroskedasticitu. Následuje stanovení kritické hodnoty χ^2_{krit} pomocí funkce CHINV(α, df) v MS Excelu a výpočet testové statistiky

$$\chi^2_{vyp} = n \cdot R^*_2 \sim \chi^2(df),$$ (3.37)

kde χ^2_{vyp} je počítaná hodnota testové neboli chí-statistiky a R^*_2 koeficient determinace nového regresního modelu. V této testové statistice jsou df shodné s počtem všech významných vysvětlujících proměnných v novém modelu. Nakonec je porovnána kritická hodnota s vypočítanou, a jestli platí, že
je \(H_0 \) zamítнутa a v modelu je potvrzen výskyt heteroskedasticity. V případě přijetí \(H_0 \) jsou všechny parametry nově sestaveného modelu nevýznamné a kvadratická složka je vysvětlena pouze konstantou. Naopak s přijetím \(H_1 \) je potvrzena významnost alespoň jedné vysvětlující proměnné v nově odhadnutém modelu, tzn. alespoň jednou proměnnou lze částečně vysvětlit vývoj kvadratické reziduální složky modelu. Jinými slovy změna alespoň jedné nezávislé proměnné ovlivňuje reziduální složku zkoumaného modelu (3.12) a tento vývoj nelze považovat za konstantní.

Zmírnění heteroskedasticity lze provést přezkoumáním původní specifikace ekonometrického modelu a jeho vhodnou transformací. Další způsob spočívá v provedení nového odhadu parametrů pomocí zobecněné metody nejmenších čtverců či vážené metody nejmenších čtverců.

3.4.2.3 Multikolinearity

Multikolinearity je vyjádřen statisticky významný lineární vztah mezi pozorovanými exogenními proměnnými, přičemž vysvětlující proměnné mohou mezi sebou být závislé párově nebo vícnásobně. V tomto případě jsou informace v modelech obsaženy duplicitně a může dojít ke zkreslení konečných výsledků. Navíc je interpretace vlastností určitého parametru \(\beta_n \) vždy spojena s podmínkou ceteris paribus. Tato podmínka je ovšem v rozporu s multikolinearitou, protože pokud dochází ke změně jedné proměnné pak, vlivem vícnásobného vztahu mezi proměnnými, dochází i ke změně dalších parametrů modelu. Hlavním důvodem zkoumání multikolinearity je zjistit intenzitu závislosti mezi dvěma a více exogenními proměnnými.

- korelační matice,
- vícnásobný koeficient determinace a
míra korelovatelnosti.

Pomocí korelační matice lze zjistit výskyt pouze párové korelace, přičemž Cipra (2013) uvádí, že míra korelace by měla být menší než 0,8. Při použití vícenásobného koeeficientu determinace je vycházeno jak z původně odhadnutého lineárního regresního modelu, tak z nově vytvořeného regresního modelu a nově vypočítaného koeeficientu determinace. V nově odhadnutém regresním modelu je vždy vysvětlována právě jedna exogenní proměnná \(x_i (i=2,3...n) \) pomocí zbylých vysvětlujících proměnných původního modelu

\[
x_{ij} = \alpha_{i,1} + \alpha_{i,2} \cdot x_{i,2} + \ldots + \alpha_{i,j-1} \cdot x_{i,j-1} + \alpha_{i,j+1} \cdot x_{i,j+1} + \ldots + \alpha_{i,n} \cdot x_{i,n} + \varepsilon_{ij}.
\]

Pro tento model je následně vypočítán nový koeeficient determinace \(R^2_{x_i} \), který je použit pro testování významnosti multikolinearity. Testování vícenásobné lineární závislosti je provedeno pomocí F-testu, kde jsou hypotézy už typicky stanoveny jako \(H_0: \) v modelu není významná multikolinearita \(H_A: \) v modelu je významná multikolinearita.

\[
F_{vyp} = \frac{R^2_{x_i}}{1-R^2_{x_i}} \sim F(df_1, df_2). \tag{3.41}
\]

Nakonec je porovnána kritická a vypočítána hodnota testové statistiky

\[
VIF_i = \frac{1}{1-R^2_{x_i}}. \tag{3.42}
\]

V rámci míry korelovatelnosti lze analyzovat stupeň multikolinearity pomocí faktoru změny variability (VIF), míry tolerance (TOL), nebo podmíněného indexu matice (CI). Postup výpočtu u všech zmíněných variant je velice podobný a je nutné jej opakovat pro všechny vysvětlující proměnné. Pro výpočet VIF a TOL je nutné opět stanovit nový koeeficient determinace \(R^2_{x_i} \), Následně je zjištěná hodnota koeeficientu dosazena do vztahu

\[
VIF_i = \frac{1}{1-R^2_{x_i}}.
\]
a čím vyšší vyjde hodnota VIF_i, tím vyšší je hodnota multikolinearity. V případě, že je počítána TOL, pak je koeficient determinace dosazen do rovnice

$$ TOL_i = \frac{1}{VIF_i} = 1 - R^2_{xy} \in (0;1) \quad (3.43) $$

a zde naopak platí čím nižší je hodnota TOL_i, tím vyšší je lineární závislost mezi exogenními proměnnými. Stanovení míry korelovanosti pomocí CI spočívá ve výpočtu největšího vlastního čísla dané korelační matice λ_{max} a vlastního čísla korelační matice λ_i. Tyto hodnoty jsou vypočteny pomocí příslušné funkce ve statistickém či ekonometrickém softwaru a dosazeny do rovnice

$$ CI_i = \sqrt{\frac{\lambda_{\text{max}}}{\lambda_i}}. \quad (3.44) $$

Zde platí, že čím vyšší vyjde hodnota CI_i, tím vyšší je i lineární závislost mezi vysvětlujícími proměnnými.

Jestliže je v modelu zjištěn vysoký stupeň multikolinearity lze provést hned několik kroků k jejímu snížení. Účinný způsob spočívá například v odstranění vysvětlující proměnné, která způsobuje vysokou lineární závislost, nebo provedení vhodné transformace problematických proměnných, popř. použití dat z nového výběrového souboru.

3.4.2.4 Specifikace modelu

Správná specifikace modelu je pro ekonometrické modelování velmi důležitá. U počáteční formulace modelu je vycházeno ze základních ekonomických hypotéz, které jsou velmi obsáhlé, a proto jsou často redukovány. Zásadní problém je, že při úpravách modelu může dojít k vyřazení důležité vysvětlující proměnné, nebo k zahrnutí specifikační chyby.

Mezi hlavní specifikační chyby je dle Hančlová (2012) řazeno:

- vynechání podstatně vysvětlující proměnné,
- zahrnutí nepodstatných vysvětlujících proměnných a
- použití špatně funkční formy.

Testování chybění specifikace vícezmierného lineárního regresního modelu je provedeno pomocí grafické analýzy reziduální složky a analytického RESET testu.

Pokud je vývoj reziduální složky zachycen v grafu v předem stanoveném konfidenčním intervalu s danou pravděpodobností a nejsou vykazovány cyklické, tj. systematické změny, nejsou v modelu vykazovány známky špatné specifikace modelu.
Test Ramsey RESET je založen na předpokladu, že v případě opomenutí podstatných vysvětlujících proměnných nebo použití špatné funkční normy jsou tyto informace zahrnuty do reziduální složky. V prvním kroku jsou sestaveny hypotézy

\[
H_0: \text{model je správně specifikován} \\
H_1: \text{model není správně specifikován},
\]

poté je do deterministické části původně zkoumaného regresního modelu přidána odhadnutá predikovaná proměnná ve formě druhé a třetí mocniny. Dále je pomocí F-testu zkoumáno, zda je nebo není původní model špatně specifikován. Příslušná F-statistika je vypočítána jako

\[
F_{vyp} = \frac{R^2_{\text{NEW}} - R^2_{\text{OLD}}}{\frac{df_1}{1 - R^2_{\text{NEW}}}} \sim F(df_1, df_2),
\]

kde \(x_{\text{NEW}}\) je počet nově přidaných proměnných, \(k\) počet koefficientů v novém modelu, včetně úrovňové konstanty a \(n\) počet pozorování. V tomto případě je \(df_1 = x_{\text{NEW}}\) a \(df_2 = n-k\). Koefficient determinace nově sestaveného modelu je vyjádřen jako \(R^2_{\text{NEW}}\) a koefficient determinace původního ověřovaného \(R^2_{\text{OLD}}\). V posledním kroku je stanovena kritická hodnota, která porovnána s vypočtenou a pokud platí vztah 3.25, došlo k výraznému zvýšení koefficientu determinace a \(H_0\) je zamítnuta na zvolené hladině spolehlivosti.

3.4.2.5 Normalita reziduí

Normalita reziduí je poslední vlastnost, na kterou je potřeba model otestovat. Reziduální složky jsou normálně rozdělené pro všechna \(t\) při konstantním rozptylu a nulové střední hodnotě. Normalita je základním předpokladem pro statistické testování hypotéz, konstrukce spolehlivostních intervalů, nalezení maximálně věrohodných parametrů aj.

Normalitu reziduí lze statisticky testovat pomocí grafických nástrojů a neparametrických testů\(^\text{12}\). První grafický test je prováděn pomocí histogramu rozdělení četností reziduí, které jsou porovnávány s Gaussovou teoretickou křivkou. Druhý grafický test vychází z výběrových distribučních funkcí standardizovaných reziduí u P-P a Q-Q grafů.

\(^{12}\) Testy jsou používány pro porovnání statistických dat, u kterých nelze předpokládat normální rozdělení pravděpodobnosti.
Pravděpodobností P-P graf (P-P Plot) slouží k porovnání teoretických a naměřených kumulativních pravděpodobností, naopak v Q-Q grafu (Q-Q Plotu) jsou porovnány teoretické a naměřené kvantily. V obou případech je normalita reziduí potvrzena v případě, že bodový graf kopíruje lineární křivku zachycenou v daném grafu.

U všech neparametrických testů je při testování vycházeno z \(H_0: \text{normální rozdělení reziduální složky} \). Testovací statistikou jsou sledovány rozdíly mezi teoretickými a empirickými hodnotami různých statistik, na základě kterých jsou také testy pojmenovány. Neparametrické testování normality reziduální složky je provedeno prostřednictvím Kolmogorov-Smirnova jednovýběrového testu (KS test).

V KS testu je porovnávána empirická distribuční funkce náhodné veličiny s normálním rozdělením pravděpodobnosti. Nejdříve jsou stanoveny hypotézy

\[
H_0: F_n(x) \text{ odpovídá } \phi(x) \\
H_1: F_n(x) \text{ neodpovídá } \phi(x),
\]

přičemž prostřednictvím \(F_n(x) \) je vyjádřena empirická a pomocí \(\phi(x) \) teoretická distribuční funkce. Následně je v pásmu 95% konfidenčního intervalu podle Hančlová (2012) stanovena kritická hodnota testové statistiky

\[
z_{\text{krit}} = 1,96
\]

a za platnosti hypotézy \(H_0 \) je vypočtena hodnota testové statistiky

\[
KS = \sqrt{n} \cdot D \sim \text{teoretické rozdělení } N(0,1)
\]

kde \(D \) představuje výpočet největšího rozdílu kladných a záporných odchylek. Tuto hodnotu lze vypočítat pomocí příslušné funkce ve statistickém či ekonometrickém softwaru. Nakonec je opět porovnána hodnota vypočítané testové statistiky s kritickou, a když

\[
KS > z_{\text{krit}},
\]

je \(H_0 \) zamítnuta na 5% hladině významnosti.

3.4.3 Ekonomická verifikace

Prostřednictvím ekonomické verifikace je ověřována správnost regresních parametrů a celého modelu s ohledem na předem stanovené ekonomické předpoklady. V této fázi jsou teoreticky zdůvodněny případné úpravy modelu a konečný model je vyhodnocen na základě vypovídací schopnosti.
Dále je zaměřena pozornost na jednotlivé odhadnuté regresní koeficienty. Posouzen je zejména směr a intenzita působení vysvětlujících proměnných na vysvětlovanou proměnnou. Jinými slovy je posouzena správnost znamének a velikost číselných hodnot odhadnutých regresních parametrů. Následně je provedena ekonomická interpretace odhadnutých regresních parametrů, přičemž všechny odhady by měly být v souladu s ekonomickou teorií a zároveň musí mít svůj opodstatněný význam. Závěrem jsou veličiny teoreticky popsány z hlediska jejich běžného vývoje v ekonomii, který nemusí být vždy shodný s výsledky v praxi.

Pokud nejsou získané parametry v souladu s ekonomickými předpoklady, je nutné zdůvodnit, z jakého důvodu není ekonomická teorie ve shodě s výsledky modelu. Rozdílné výsledky nemusí znamenat špatnou specifikaci modelu, ale mohou naopak dokazovat, že některé zažité ekonomické teorie nejsou vždy v souladu s praxí. Další příčinou mohou být specifika ekonomiky, pro niž je ekonometrický model sestaven a délka časové řady analyzovaných proměnných v modelu. Důležité je pracovat s dostatečně dlouhými časovými řadami, protože čím kratší je časová řada, tím méně událostí je zachyceno ve vývoji veličin.

V případě, že jsou v jakékoliv části verifikace zjištěny závažné nedostatky, je nutné zrevidovat předcházející etapy a v případě potřeby provést korekci u formulace modelu, popř. datových vstupů. Znovu musí být provedena i statistická, ekonometrická a ekonomická verifikace.

Při možnosti výběru z více modelů je důležité zvážit význam jednotlivých proměnných v modelu, délku pozorování a vypovídací schopnost zkoumaných modelů. V této diplomové práci jsou analyzované modely použity k posouzení vlivu vybraných faktorů na závislou proměnnou a roční predikci budoucího vývoje závislé proměnné.

3.5 Predikce proměnných

Odhadnutý model je následně využit pro predikci. Hlavním cílem je předpovědět vývoj závislé proměnné mimo interval pozorování. Prognóza je provedena pomocí statistického, popř. ekonometrického softwaru formou predikce střední hodnoty, predikce individuální hodnoty, bodové predikce a intervalové predikce.

U podmíněné predikce (ex-ante) je prognóza vysvětlované proměnné provedena pomocí odhadu očekávaných hodnot vysvětlujících proměnných. Při nepodmíněné predikci
endogenní proměnné (ex-post) je vycházeno ze znalostí hodnot exogenních proměnných pro predikované období.

Predikce střední hodnoty spočívá v předvídání průměrné hodnoty závislé proměnné, která je umístěna přímo na vyrovnáncí regresní funkci (křivce). U prognózy individuální hodnoty je predikována individuální vysvětlovaná proměnná zatížená chybou predikce od vyrovnáné střední hodnoty.

Bodová predikce je využívána tehdy, pokud je odhadována pouze jedna budoucí hodnota závislé proměnné. Intervalová predikce je použita v případě, že je pro každou vysvětlovanou proměnnou stanoven interval spolehlivost.

V případě intervalového odhadu je charakteristika základního souboru popsána pomocí konfidenčního intervalu, k němuž je přidána pravděpodobnost, že odhad bude správný, tj. stupeň spolehlivosti odhadu. V diplomové práci je u predikce střední a individuální hodnoty pracováno s 95% konfidenčním interval.

Vymezení konfidenčního intervalu střední hodnoty je provedeno na základě vztahu

$$\langle \hat{y}_0 - z_{krit} \cdot \sqrt{\text{var}(\hat{y}_0)} \rangle \leq E(y_0/x_0) \leq \hat{y}_0 + z_{krit} \cdot \sqrt{\text{var}(\hat{y}_0)}$$

přičemž rozptyl je stanoven jako

$$\text{var}(\hat{y}_0) = \sigma^2 \cdot \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2} \right], \quad kde: \quad \sigma^2 = \frac{RSS}{df = (n-k)}.$$

(3.51)

Obdobně je stanoven také konfidenční interval individuální hodnoty

$$\langle \hat{y}_0 - z_{krit} \cdot \sqrt{\text{var}(\hat{y}_0)} \rangle \leq y_0/x_0 \leq \hat{y}_0 + z_{krit} \cdot \sqrt{\text{var}(\hat{y}_0)}$$

a rozptyl

$$\text{var}(y_0 - \hat{y}_0) = \sigma^2 \cdot \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2} \right], \quad kde: \quad \sigma^2 = \frac{RSS}{df = (n-k)}.$$

(3.52)

(3.53)

(3.54)
U přechozích vztahů představuje \hat{y}_0 bodovou predikci střední hodnoty, z_{krit} kritickou hodnotou testové statistiky stanovenou na základě vztahu 3.51, $\var(y_0)$ chybu predikce střední hodnoty, $\var(y_0 - \hat{y}_0)$ chybu predikce individuální hodnoty, \bar{x} průměrnou hodnotu nezávislé proměnné, $E(y_0|x_0)$ konfidenční interval střední hodnoty a y_0/x_0 konfidenční interval individuální hodnoty.

V diplomové práci je pracováno celkem se dvěma modely, přičemž výsledná predikce vysvětlované proměnné je provedena na základě váženého průměru predikcí jednotlivých modelů.
4 Posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání

Cílem aplikační části práce je na základě posouzení vlivu vybraných faktorů specifikovat vhodné modely vývoje hypotečních úvěrů v selhání, pomocí kterých je predikován budoucí vývoj zkoumané veličiny. V aplikační části jsou zkoumány celkem dva různé modely.

Nejdříve jsou modely formulovány ekonomicky, matematicky a ekonometricky. Poté jsou analyzované faktory popsány z hlediska vlastností a vývoje v čase. U jednotlivých časových řad je podle potřeby provedena dekompozice dat, analýza odlehlých hodnot a transformace časových řad. U původních proměnných je poukázaná na problém s nestacionaritou, proto jsou oba modely upraveny tak, aby byly splněny předpoklady pro použití metody nejmenších čtverců. Dále je pro oba modely provedena korelační analýza a odhad parametrů s následným zhodnocením koeficientu determinace. Ověření předpokladů je postupně provedeno ve statistické, ekonometrické a ekonomické verifikaci.

V části ekonometrické verifikace jsou modely postupně testovány na přítomnost autokorelace, heteroskedasticity a multikolinearity. Ověřena je také správná specifikace modelu a normální rozdělení reziduální složky obou modelů. V poslední části této kapitoly je pro oba modely provedena roční intervalová a bodová predikce.

V aplikační části diplomové práce jsou výpočty provedeny v programu SPSS a MS Excel, přičemž je postupováno podle metodiky popsané v předcházející kapitole. S programem SPSS je pracováno v všech následujících částech práce a MS Excel je použit k ověření matematických testů, které jsou součástí verifikace modelu. Z důvodu většího rozsahu je většina výsledků těchto testů uvedena v přílohách diplomové práce.

Formulace modelu je rozdělena na tři části. První část spočívá ve formulaci ekonomického modelu, jehož součástí je charakteristika jednotlivých proměnných, jejich dílčí vliv na vysvětlovanou proměnnou a formulace ekonomických hypotéz. V druhé části je ekonomický model převeden do matematické formy a v třetí části je vytvořen samostatný ekonometrický model.

4.1 Ekonomická formulace modelu

V diplomové práci je zkoumána závislost hypotečních úvěrů v selhání poskytnutých domácnostem na vybraných makroekonomických datech a vybraných datech čerpánych za celý bankovní sektor ČR. Volba jednotlivých proměnných je motivována odborným článkem Melecký, Melecký a Šulganová (2015) a Klein (2013). Zvolená data jsou

- míra inflace,
- hrubý domácí produkt (HDP),
- obecná míra nezaměstnanosti,
- hypoteční úvěry poskytnuté domácnostem,
- úrokové sazby z nových hypotečních úvěrů a
- ukazatel podílu vlastního kapitálu na aktivech (ER).

Hypoteční úvěry jsou děleny na hypoteční úvěry bez selhání a hypoteční úvěry se selháním. Podle vyhlášky č. 123/2007 Sb., je selhání dlužníka definováno jako situace, kdy lze předpokládat, že dlužník pravděpodobně nesplati svůj závazek řádně a včas, aniž by věřitel přistoupil k uspokojení své pohledávky ze zajištění, nebo alespoň jedna splátka jistiny nebo příslušenství jakéhokoliv závazku dlužníka vůči věřiteli je po splatnosti déle než 90 dnů. Ve vyhlášce č. 163/2014 Sb., jsou v §81 a §82 uvedeny hypoteční úvěry, které musí banky evidovat a tvořit na ně opravné položky (OP). Velikost tvořených OP je závislá na době po splatnosti. Pokud je platba opožděna v intervalu (90,180) dní, pak jsou tvořeny OP ve výši 20 % z dlužné částky a jedná se o tzv. nestandartní pohledávky. OP na pochybné pohledávky jsou tvořeny ve výši 50 % tehdy, když je platba opožděna o (180,360) dní, a když je platba opožděna o více než 360 dní, pak jsou tvořeny OP ve výši 100 % na ztrátové pohledávky. Pohledávky bez selhání jsou děleny na standartní s 30denní dobou splatnosti a sledované s (30,90) denní dobou po splatnosti. V diplomové práci je pracováno pouze s hypotečními úvěry v selhání za obyvatelstvo, vyjádřenými v mil. Kč.

HDP slouží k vyjádření finální hodnoty produkce vytvořené za určité období výrobními faktory, které jsou umístěny na území daného státu. V tomto případě není u výrobních faktorů kladen důraz na původ vlastníka ale na to, jestli je produkce vyprodukována na území ČR. Tento ukazatel je používán pro určení výkonnosti ekonomiky a slouží k porozumění celkové hodnoty statků i služeb, které byly nově vytvořeny na daném území za určité období. Pro účely diplomové práce je pracováno s výdajovou metodou HDP vyjádřenou ve stálých cenách. Tato metoda spočívá v součtu spotřebních výdajů domácností, investic firem, vládních výdajů a čistého exportu. Stálými cenami je zachycen vývoj objemových ukazatelů po očištění o cenové vlivy. Údaje o vývoji HDP jsou vyjádřeny v mil. Kč. V tomto případě existuje negativní vliv na závislou proměnnou, protože s růstem výkonnosti ekonomiky (potažmo tedy bohatství lidí) zpravidla klesá množství nesplacených hypotečních úvěrů.

Podle ekonomické teorie je obecnou mírou nezaměstnanosti vyjádřen procentuální podíl nezaměstnaných na ekonomicky aktivním obyvatelstvu, tedy na skupině lidí zaměstnaných a nezaměstnaných vedených na úřadu práce ve věku 15 až 64 let. Zde je předpokládán pozitivní vztah se závislostí a jednotlivé hodnoty míry
nezaměstnaností jsou vykazovány v procentech. Pokud roste množství lidí bez práce, a tedy i bez příjmů, přibývají těmto lidem také problémy se splácením jejich hypotečních úvěrů.

Hypoteční úvěry jsou blíže popsány v teoretické části 2.3.2, přičemž pro účely testování je pracováno pouze s hypotečními úvěry poskytnutými domácnostem. Do této kategorie jsou řazeny všechny hypoteční úvěry na bytové nemovitosti (bez státní podpory, se státní podporou), k financování investic do bytových nemovitostí (včetně stavebních pozemků). V proměnné jsou dále zahrnuty úvěry ze stavebního spoření, u kterých je splněna definice hypotečních úvěrů (hypoteční úvěry ze stavebního spoření). Hypoteční úvěry jsou blíže popsány v teoretické části 2.3.2., přičemž pro účely testování je pracováno pouze s hypotečními úvěry poskytnutými domácnostem. Do této kategorie jsou řazeny všechny hypoteční úvěry na bytové nemovitosti (bez státní podpory, se státní podporou), k financování investic do bytových nemovitostí (včetně stavebních pozemků). V proměnné jsou dále zahrnuty úvěry ze stavebního spoření, u kterých je splněna definice hypotečních úvěrů (hypoteční úvěry ze stavebního spoření). Hypoteční úvěry v selhání tvorí určité procento celkových hypotečních úvěrů, tzn., že s rostoucím objemem hypotečních úvěrů roste i počet hypotečních úvěrů v selhání. Hypoteční úvěry za určitou kompenzaci, kterou inkasují ve formě poplatků a úroků. Úroky se odvíjejí od finančních možností klienta, přičemž s rostoucí rizikovostí zákazníka rostou úrokové sazby, za kterou je klientovi hypoteční úvěr poskytnut. V tomto případě je tedy počítáno s kladným vztahem k endogenní proměnné. Celková suma hypotečních úvěrů domácností je uvedena v mil. Kč.

Úrokové sazby z nových hypotečních úvěrů jsou stanoveny jako průměrné sazby z korunových hypotečních úvěrů poskytnuté bankami klientům. Sledovány jsou jednak sjednané úrokové sazby přepočtené pomocí úrokových kapitalizací na roční základ (p.a.) a také roční procentní sazba nákladů hypotečních úvěrů na nákup bytových nemovitostí. Úrokové sazby jsou stanoveny v procentech a je zde předpokládán pozitivní vztah se sledovanou závislostí. V případě zvýšení úrokové sazby rostou náklady na splátky hypotečních úvěrů a zejména méně bonitní osoby nemusí být schopny úvěry splácet.

ER patří mezi rozvahové ukazatele zadluženosti, pomocí něhož lze zjistit, jaká část aktiv bank je financována kapitálem akcionářů. Pro podniky platí, že čím je tato hodnota vyšší, tím nižší případá riziko na věřitele a běžně je vykazována kolem 45 % až 60 %. V případě bank je tento ukazatel velmi nízký přibližně 5 % až 15 %, protože větší polovina aktiv je tvořena poskytnutými úvěry financovanými hlavně cizími zdroji, tj. depozity klientů, závazky vůči ostatním bankám, prodejem hypotečních zástavních listů atd. Zejména v systémově důležitých bank, jejichž úvěrování je rizikovější a půjčují větší množství peněz (čerpaných zejména z cizích zdrojů) subjektům bez důkladného prověření, klesá hodnota ukazatele a zároveň postupně roste množství nesplácených hypotečních úvěrů. Finanční instituce, které jsou natolik velké, že jejich bankrot by ohrozil celé hospodářství, často
spoléhají právě na stát, který jim v případě úpadku raději pomůže, než aby ohrozil ekonomiku v celé zemi. Tato situace je v makroekonomické a politické teorii nazývána „Too Big to Fail“. V tomto případě je ukazatel vyjádřen v procentech a existuje zde negativní vztah s vysvětlovanou proměnnou.

V diplomové práci jsou nezávisle na sobě zkoumané dva modely, přičemž v prvním modelu \(1{HS}\) jsou zahrnuta všechna obecná makroekonomická data a hypoteční úvěry poskytnuté domácnostem od roku 2002. Druhý model \(2{HS}\) je rozšířen o zbývající proměnné, ale z důvodu kratší časové řady je počítáno s daty až od roku 2007.

Výchozi ekonomická formulace prvního a druhého modelu lze na základě uvedených informací zapsat pomocí funkcí

\[
{HS}_1 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t, \tag{4.1}
\]

\[
{HS}_2 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t + \beta_6 \cdot i_t + \beta_7 \cdot \text{ER}_t. \tag{4.2}
\]

kde představuje \(HS\) hypoteční úvěry v selhání, \(\pi_t\) inflaci měřenou indexem CPI, \(\text{HDP}_t\) hrubý domácí produkt, \(N_t\) nezaměstnanost, \(H_t\) poskytnuté hypoteční úvěry, \(i_t\) úrokové sazby z nových hypotečních úvěrů a \(\text{ER}_t\) ukazatel podílu vlastního kapitálu na aktivech. Dolním indexem je vyjádřen čas \(t\), ve kterém je příslušná proměnná pozorována a horním indexem je vyjádřen předpokládaný vztah příslušné exogenní proměnné k vysvětlované endogenní proměnné a označení zkoumaného modelu.

4.1.2 Matematická formulace modelu

Obecná matematický zápis zkoumaných modelů je formulován podle rovnice 3.2 uvedené v teoretické části práce do podoby

\[
{HS}_1 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t, \tag{4.3}
\]

\[
{HS}_2 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t + \beta_6 \cdot i_t + \beta_7 \cdot \text{ER}_t. \tag{4.4}
\]

4.1.3 Ekonometrická formulace modelu

Obecná ekonometrická formulace zkoumaných modelů je na základě vztahu 3.3 zapsána jako

\[
{HS}_1 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t + \varepsilon_t, \tag{4.5}
\]

\[
{HS}_2 = \beta_1 + \beta_2 \cdot \pi_t + \beta_3 \cdot \text{HDP}_t^- + \beta_4 \cdot N_t + \beta_5 \cdot H_t + \beta_6 \cdot i_t + \beta_7 \cdot \text{ER}_t + \varepsilon_t. \tag{4.6}
\]
S ohledem na ekonomické předpoklady jsou odhadnuty následující modely

\[1 \hat{HS} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \pi_t + \hat{\beta}_3 \cdot HDP_t + \hat{\beta}_4 \cdot N_t + \hat{\beta}_5 \cdot H_t + \hat{\varepsilon}_t, \]
\[2 \hat{HS} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \pi_t + \hat{\beta}_3 \cdot HDP_t + \hat{\beta}_4 \cdot N_t + \hat{\beta}_5 \cdot H_t + \hat{\beta}_6 \cdot i_t + \hat{\beta}_7 \cdot ER_t + \hat{\varepsilon}_t. \]

Při konstrukci výše uvedených modelů je vycházeno z ekonomických hypotéz sestavených pro každý parametr zvlášť. Tyto hypotézy lze souhrnně zapsat pomocí následujícího vztahu

\[\hat{\beta}_2, \hat{\beta}_4, \hat{\beta}_5 > 0 > \hat{\beta}_3, \hat{\beta}_7. \]

Pozitivní závislost s vysvětlovanou proměnnou je očekávána u inflace, míry nezaměstnanosti a hypotečních úvěrů poskytnutých domácnostem. Naopak negativní závislost je očekávána u HDP a ER. Tyto hypotézy jsou graficky testovány pomocí bodových diagramů uvedených v Příloze č. 1 pro první model a Příloze č. 2 pro druhý model. Z diagramů lze vyčíst, že ekonomické předpoklady prvního modelu jsou splněny pouze u parametru \(\beta_5 \) a ekonomické předpoklady druhého modelu jsou splněny u parametrů \(\beta_4 \) a \(\beta_5 \). Pro správnou funkci modelu je důležitá platnost všech výchozích ekonomických hypotéz, proto jsou v dalších částech diplomové práce data důkladně analyzována a dle potřeby transformována.

4.2 Sběr a analýza dat

V této části je popsána fáze sběru a analýzy dat. Nejdříve jsou uvedeny zdroje, odkud jsou data čerpána, poté je datový soubor analyzován a v případě potřeby upraven o extrémní hodnoty. Takto upravená data jsou očištěna a transformována. Nakonec jsou z transformovaných dat sestavy dva modifikované lineární regresní modely, které jsou v dalších částech diplomové práce patřičně upraveny.

4.2.1 Popis dat

V diplomové práci je počítáno s čtvrtletními časovými řadami za ČR čerpanými z veřejně dostupné databáze BLUECONIMICS a ARAD\(^{13}\). Z celosvětové databáze BLUECONOMICS je získána časová řada ukazatele ER a časové řady všech ostatních

\(^{13}\) Tato databáze je spravována přímo orgány ČNB.
proměnných jsou čerpány z české databáze ARAD. Platnost modelu a stanovené hypotézy jsou empiricky ověřeny na získaných datech.

U hypotečních úvěrů v selhání je v případě finančního systému žádoucí dosahovat co nejnižší celkové hodnoty. Vývoj těchto úvěrů je zachycen v Grafu 4.1, kde je patrné nejdříve pomalý nárůst, ale v důsledku nástupu globální finanční a ekonomické krize došlo od konce roku 2008 k podstatnému zrychlení růstu.

Graf 4.1 Vývoj hypotečních úvěrů v selhání

Tato krize propukla v roce 2007 a byla akcelerována pádem banky Lehman Brothers v polovině září 2008. První výrazné zvýšení hypotečních úvěrů v selhání v ČR bylo zaznamenáno už ve třetím kvartálu (Q3) roku 2008, kdy nárůst těchto hypoték činil 16,5 % oproti předcházejícímu čtvrtletí. Vůbec největší růst byl v prvním kvartálu (Q1) roku 2009, kdy bylo dosaženo dokonce 37,8 % růstu oproti předcházejícímu čtvrtletí. Z dat je patrné, že nárůst není skokový, ale přesto velmi intenzivní a nejvyšší hodnoty hypotečních úvěrů v selhání 23 327,5 mil. Kč je dosaženo v Q1 roku 2013. V dalších šesti čtvrtletích je vývoj hypotečních úvěru v selhání poměrně stabilní a od čtvrtého kvartálu (Q4) roku 2014 je
vykazován klesající trend, který je spojen zejména s rostoucí životní úrovní a postupným přechodem ekonomiky do fáze expanze. Z grafického vývoje je patrný nejdříve rostoucí a následně klesající trend, jenž je vyjádřením jednoho velkého cyklu v období finanční krize. Vzhledem k vývoji proměnné není časová řada stacionární, a proto je třeba ji vhodně upravit.

Vývoj inflace v ČR je zobrazen v Grafu 4.2. Hodnota inflace je řízena pomocí nástrojů ČNB tak, aby bylo dosaženo inflačního cíle stabilní a nízké inflace. V jednotlivých letech došlo hned několikrát ke změně inflačního cíle, který se ČNB snaží plnit. Začátkem ledna byl nastaven inflační cíl jako 3 % až 5 % pásmo a na konci roku 2005 bylo toto pásmo sníženo na 2 % až 4 %. Od roku 2006 do roku 2009 byl stanoven inflační cíl ve výši 3 % a současný 2 % cíl je platný od ledna roku 2010 do přistoupení ČR k eurozóně. Nutno podotknout, že ČNB usiluje o takový vývoj inflace, aby se její skutečná hodnota nevzdála od 2 % cíle o více než jeden procentní bod na obě strany. Těmito změnami je podstatně ovlivněn vývoj inflace ve sledovaném období, který je na první pohled nestabilní.

Graf 4.2 Vývoj inflace

Ve sledovaném období nastal největší výkyv v souvislosti s finanční krizí. Vlivem přehřáté ekonomiky došlo začátkem roku 2008 k prudkému vzestupu inflace, přičemž vrcholu 7,1 % bylo dosaženo těsně před vypuknutím krize v Q1 roku 2008. V souvislosti s krizí došlo k rychlému ochlazení ekonomiky a vlivem recese klesla ve Q3 následujícího roku hodnota inflace až na své úplné dno (pokud by dále klesala, jednalo by se už o deflací). Dalších pár let byla hodnota inflace držena zhruba okolo inflačního cíle. Významnou změnou v listopadu 2013 bylo zahájení devizové intervence koruny, jež spočívala v udržení jednostranného neomezeného kurzového závazku koruny k euru. ČNB oslabila kurz koruny mírně nad úroveň kurzového závazku stanoveného na 27 CZK/EUR. Tento krok byl reakcí na významný pokles inflace v předcházejícím roce, který měl podle predikcí ČNB pokračovat i v budoucnu. ČNB se rozhodla přistoupit k tomuto zásadnímu opatření z důvodu
udržení inflace okolo 2% inflačního cíle. Vzhledem k oslabení české koruny vůči euru vzrostl export firem v ČR, ale i přesto v Q1 roku 2014 nadále pokračoval pokles inflace. Tento pokles byl způsoben zejména snížením cen potravin a ropy. Poptávka po ropě byla tehdy mnohem menší, než její nabídka což způsobilo významný cenový pokles, který byl zastaven až začátkem roku 2016. Mezi lety 2014 až 2016 cena ropy klesla o více než 70 % a hodnota inflace byla vykazována kolem spodní hranice 0 %. Z vývoje časové řady není zřejmý žádný trend ani sezónnost. Jednak je totiž pracováno s meziroční změnou míry inflace v čase, čímž je odstraněna případná sezónná rostlina. Časová řada je na první pohled kolísavá zejména proto, že je zachycena pouze určité část vývoje (časová řada není zachycena v celém dlouhém období) v malém měřítku. Pro všechny proměnné, které jsou zachyceny v takto malém měřítku, jsou v Příloze č.4 zobrazeny liniové grafy ve zvětšeném měřítku. U inflace je tak na první pohled zřejmé, že vývoj lze v čase považovat za stacionární.

Vývoj HDP významně vypovídá o stavu ekonomiky dané země. Dlouhodobý vývoj HDP v čase je rostoucí a souvisí s neustálým pokrokom technologií v čase i rostoucím životním standardem. Zkoumaná časová řada reálného HDP ČR je zachycena v Grafu 4.3.

Graf 4.3 Vývoj HDP

Z hlediska ekonomické teorie je optimální, pokud se míra nezaměstnanosti pohybuje okolo své přirozené hranice, tj. pracují pouze ti, kteří o práci stojí. Časová řada obecné míry nezaměstnanosti je zachycena v Grafu 4.4, kde je na první pohled viditelný skokový vývoj.

Graf 4.4 Vývoj obecné míry nezaměstnanosti

je spojená se stabilním vývojem inflace a z ekonomického hlediska je dlouhodobý vývoj obecné míry nezaměstnanosti brán jako stacionární. Vzájemný vztah těchto dvou veličin je popsán pomocí Phillipsovy křivky\(^{14}\), přičemž většina ekonomických škol se shoduje na tom, že tvar Phillipsovy křivky je v dlouhém období vertikální. Dlouhé období je v ekonomii spojeno s ekonomickou rovnováhou, tj. v případě stabilizace inflace a poklesu míry nezaměstnanosti na přirozenou úroveň. Vývoj časové řady je zkoumán pouze pro omezené období a na první pohled výrazné výkyvy obecné míry nezaměstnanosti jsou pouze zaznamenány malým měřítkem. V příloze č. 4 je také zachycen vývoj obecné míry nezaměstnanosti, tentokrát ale ve větším měřítku. Ve sledovaném období je viditelná fluktuace o přibližně ±2 p. b. okolo 6% míry nezaměstnanosti a přesto, že je zachycen stejný vývoj dvakrát, tak u menšího měřítku výkyvy mnohem významnějším dojmem. Z tohoto důvodu je s obecnou mírou nezaměstnanosti pracováno jako se stacionární časovou řadou.

Vývoj hypotečních úvěrů na bydlení je zachycen v Grafu 4.5, kde je možné sledovat poměrně stabilní rostoucí trend.

Graf 4.5 Vývoj hypotečních úvěrů na bydlení

Zpočátku sledovaného období byl průměrný čtvrtletní nárůst přibližně 10%. Mírné zakolísání bylo zaznamenáno těsně před propuknutím krize v Q1 roku 2008, kdy byl čtvrtletní růst poprvé menší než 4%. Přesně rok poté došlo k ojediněle vysokému nárůstu, kdy v období Q1 roku 2009 byl domácnostem nárazově poskytnut o 27,9% větší objem hypotečních úvěrů než v předcházejícím čtvrtletí. Tento jev je vysvětlován krizovou situací v ČR, kdy začátkem roku začalo intenzivní snižování úrokových sazeb, které trvalo do konce roku 2016. Začátkem roku 2010 došlo k opětovnému zpomalení růstu, který byl

\(^{14}\) Phillipsovou křivkou je popsán inverzní vztah mezi nezaměstnaností a inflací, tzn., že klesající míra nezaměstnanosti je doprovázena rostoucími mírou mzdové inflace a naopak.
do konce sledovaného období ve výši 1 % až 3 %. Lidé si velmi rychle zvykli na klesající trend úrokových sazeb a často vyčkávali se sjednáním hypoték do doby, než budou úrokové sazeby z hypotečních úvěrů co nejnižší. Stabilně rostoucí vývoj souvisí s rostoucí životní úrovni domácností, jejich ochotou se více zadlužovat a z dlouhodobého hlediska s rostoucími cenami nemovitostí. Na první pohled je zřejmý rostoucí trend zkoumané proměnné, proto je třeba časovou řadu стационаризовать pomocí vhodně zvolené transformace.

Výše úrokových sazeb z nově sjednaných hypotečních úvěrů je ve sledovaném období zobrazena v Grafu 4.6. Tyto sazy jsou ovlivněny jak úrokovými sazbami na mezibankovním trhu (PRIBOR), tak výnosovými křivkami českých státních dluhopisů (ČSD) a rizikovou marží, která je vždy vztažena k ratingu domácnosti žádající o hypoteční úvěr.

Graf 4.6 Vývoj úrokových sazeb nově sjednaných hypotečních úvěrů

Vlivem přehřáté ekonomiky byl zpočátku sledovaného období zaznamenán rostoucí trend PRIBORu a výnosu ČSD, které mají přímý vliv na vývoj úrokových sazeb z nově sjednaných hypotečních úvěrů. Maximální hodnoty 5,74 % bylo u sledované proměnné dosaženo ve Q3 roku 2008, přičemž po celý následující rok nedošlo téměř k žádným změnám v jejím vývoji. Výraznější pokles úrokových sazeb z nově sjednaných hypotečních úvěrů byl zaznamenán od Q1 roku 2010, kdy s expanzivní politikou uplatňovanou ČNB od roku 2009 došlo k poklesu inflace. Výnos ČSD, který je přím a závislý na vývoji inflace, také postupně klesal. Ve Q3 roku 2015 dokonce došlo k poklesu výnosu tříletých ČSD do záporných hodnot a tento trend pokračoval až do konce sledovaného období, kdy úrokové sazby z nově sjednaných hypotečních úvěrů dosáhly své nejnižší hranice 2 %. Vývoj časové řady je přím a závislý na několika faktorech a jedním z nejvýznamnějších je právě inflace skrytá ve vývoji ČSD. Na první pohled cyklický trend kolem roku 2008 je způsoben poměrně krátkou časovou řadou a malým měřítkem, které dokáže vývoj veličiny velmi zkreslit.
Z tohoto důvodu je v Příloze č. 4 zachycen stejný vývoj, tentokrát ve větším měřítku, ze kterého je zřejmé že vývoj časové řady lze považovat za stacionární.

Vývoj ukazatele ER za český bankovní sektor je zachycen v Grafu 4.7. Důležitým impulsem ve vývoji tohoto ukazatele byla globální finanční a ekonomická krize, na kterou navázalo mnoho omezení pro banky hlavně ze strany EU. Oproti zahraničním bankám české banky krizi přečkaly relativně bez problémů a v mnoha případech pomáhaly svým centrálám navýšovat kapitál.

Graf 4.7 Vývoj ER

Na první pohled je zřejmé, že vývoj ukazatele je ve sledovaném období rostoucí a postupně došlo k růstu z 5 % na 7,5 %, tzn., že i v ČR došlo k větší stabilizaci bank navýšením podílu vlastního kapitálu v čase o přibližně 2,5 %. Důkazem poměrně stabilního bankovního sektoru je pouze mírné, ale stabilní navýšování ukazatele ER oproti zahraničním zemím, kde došlo i k více než trojnásobnému růstu tohoto ukazatele. Paradoxně díky krizi začal být kladen větší důraz na stabilitu a transparentnost bank vůči veřejnosti a okolo roku 2008 začaly být zveřejňovány některé ukazatele hodnotící finanční stabilitu bank. Ukazatel ER je za ČR možný dohledat již od roku 2007 a z důvodu malého měřítku působí vývoj této veličiny jako výrazně rostoucí, přestože došlo k navýšení o pouhé 2,5 %15. V Příloze č. 4 je zachycen vývoj ukazatele ER ve větším měřítku s poměrně stabilním růstem v čase, avšak z důvodu stabilního tendru je tato veličina dále upravena.

4.2.2 Dekompozice časových řad

Dekompozice časových řad je provedena pro proměnné, u kterých je zaznamenán sezónní trend. Pomocí programu SPSS jsou při sezónní dekompozici rozloženy jednotlivé

15 Na druhou stranu je nutno brát v potaz zvýšení vlastního kapitálu bank, který při tomto nárůstu byl ve výši desítek až stovek milionů Kč.
časové řady na složky ERR, SAS, SAF, STC. Pomocí ERR je vyjádřena reziduální chyba vyhlazující časovou řadu, SAS je původní časová řada očištěná od sezónních faktorů, SAF slouží k vyjádření sezónního faktoru, který vede k odchylce od trendové složky a STC ke znázornění trendu a dlouhodobého vývoje daného ukazatele.

Vždy jsou očištěny pouze proměnné, u kterých je vykazován sezónní trend. V případě, že jsou sezónně očištěny proměnné bez sezónního trendu, může dojít ke ztrátě podstatných vlastností a umělému vyhlazení časové řady.

Vývoj sledovaných proměnných v čase je zachycen pomocí liniových grafů v části 4.2.1, přičemž sezónní trend je vykazován pouze u HDP. Očištění je provedeno pomocí aditivní dekompozice a vývoj časové řady před i po očištění je zachycen v Grafu 4.8.

Graf 4.8 Vývoj HDP, sezónně očištěno

V dalších částech diplomové práce je pracováno již se sezónně očištěným HDP.

4.2.3 Analýza odlehlých a extrémních hodnot

Analýza odlehlých a extrémních hodnot je provedena pro každou proměnnou zvlášť. Odlehlá pozorování jsou zjištěna na základě výpočtu popisné statistiky zachycené v Tab. 4.1 i box-plotů vykreslených v Příloze č. 5 a Příloze č. 6.
Tab. 4.1 Jednorozměrná popisná statistika

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Střední hodnota</th>
<th>Směrodatná Odchylka</th>
<th>Chybějící hodnoty</th>
<th>Odlehlá, extrémní pozorování²</th>
<th>Odlehlá, extrémní pozorování²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Počet</td>
<td>Dolní</td>
<td>Horní</td>
</tr>
<tr>
<td>HS</td>
<td>58</td>
<td>11490,91</td>
<td>9082,36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π</td>
<td>58</td>
<td>1,89</td>
<td>1,65</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HDP_SAS</td>
<td>58</td>
<td>955953,24</td>
<td>94898,25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>58</td>
<td>6,60</td>
<td>1,27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>58</td>
<td>459542,28</td>
<td>287027,40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Střední Hodnota</th>
<th>Směrodatná Odchylka</th>
<th>Chybějící hodnoty</th>
<th>Odlehlá, extrémní pozorování²</th>
<th>Odlehlá, extrémní pozorování²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Počet</td>
<td>Dolní</td>
<td>Horní</td>
</tr>
<tr>
<td>HS</td>
<td>39</td>
<td>16344,21</td>
<td>7044,80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π</td>
<td>39</td>
<td>1,98</td>
<td>1,89</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HDP_SAS</td>
<td>39</td>
<td>1012717,48</td>
<td>36558,44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>39</td>
<td>6,05</td>
<td>1,16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>39</td>
<td>626778,52</td>
<td>184877,83</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>39</td>
<td>3,95</td>
<td>1,27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ER</td>
<td>39</td>
<td>6,53</td>
<td>0,85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Počet hodnot mimo interval (Q1 - 1.5*IQR; Q3 + 1.5*IQR).

V obou modelech je zjištěn výskyt odlehlých hodnot u inflace, přičemž pomocí obou metod jsou v prvním modelu nalezeny tři a v druhém modelu čtyř odlehlé hodnoty. V druhém modelu jsou pomocí box-plotu objevena další čtyř odlehlá pozorování u sezónně očištěné proměnné HDP, ale v případě popisné statistiky byly potvrzeny jako odlehlé pouze dvě ze čtyř hodnot. Ani v jednom případě není třeba hodnoty nahrazovat, protože výskyt odlehlých hodnot výrazně neovlivňuje výpočty. Nyní je možné přikročit k transformaci časových řad.

4.2.4 Transformace časových řad

Transformace časových řad je provedena pouze u nestacionárních časových řad. Všechny sledované proměnné jsou blíže specifikovány v části 4.2.1. Za nestacionární proměnné jsou považovány hypoteční úvěry v selhání, HDP, hypoteční úvěry poskytnuté domácnostem a ER. Transformace je provedena pro každý model zvlášť a postupováno je přesně podle teoretické části 3.2.4.

Nejdříve jsou podle vztahu 3.9 vypočítány diference a podle rovnice 3.10 růsty pro proměnné hypoteční úvěry v selhání, HDP a hypoteční úvěry poskytnuté domácnostem. Následně je podle vztahu 3.11 použit logaritmus na úpravu proměnné ER, u které je vykazován stabilní vývoj v čase, a proto postačí zmírnit rostoucí tendence pomocí logaritmu. Nakonec je vytvořena umělá proměnná označená jako trend. Postupem času ČNB klade čím dál tím větší nároky na komerční banky a vlivem krize jsou také zpřísňována pravidla pro poskytování hypotečních úvěrů. Tento trend je zachycen pomocí umělé proměnné a významnost nové veličiny je v dalších částech testována zvlášť pro každý model.

75
Nestacionární proměnné vstupující do původních lineárních regresních modelů (zachycených v rovnici 4.5 a 4.6) neplní základní předpoklady pro použití metody nejmenších čtverců, proto jsou na základě provedené transformace sestaveny dva nové modely. První modifikovaný lineární regresní model je popsán vztahem

\[
growth_{1}HS = \beta_1 + \beta_2 \cdot \pi_i + \beta_3 \cdot growth_HDP_i + \beta_4 \cdot N_i + \\
+ \beta_5 \cdot diff_H_i + \beta_6 \cdot trend_i + \varepsilon_i,
\]

a druhý modifikovaný lineární regresní model je popsán vztahem

\[
growth_{2}HS = \beta_1 + \beta_2 \cdot \pi_i + \beta_3 \cdot growth_HDP_i + \beta_4 \cdot N_i + \\
+ \beta_5 \cdot growth_H_i + \beta_6 \cdot i_i + \beta_7 \cdot \ln ER_i + \beta_8 \cdot trend_i + \varepsilon_i.
\]

Tyto modely jsou v dalších částech diplomové práce podrobně analyzovány a dále upraveny.

4.3 Odhady parametrů modelu

V této podkapitole je nejdříve vypočítána korelační matice a křížová korelace pro analyzované proměnné. Poté je u obou modifikovaných lineárních regresních modelů provedena úprava a odhad jednotlivých parametrů. Nakonec je na základě pomocných koeficientů posouzena i příslušná vypovídací schopnost modelů.

4.3.1 Korelační analýza modelu

Korelační analýza je blíže specifikována v teoretické části 3.3.1. Posouzení závislostí mezi pozorovanými veličinami obou modelů je provedeno pomocí křížových korelací a korelačních matic.

Pro korelační matice uvedené v Příloze č. 7 a Příloze č. 8 je charakteristické, že na diagonále jsou vždy jedničky, jelikož vzájemná korelace mezi stejnými prvky je rovna jedné. Pro každou proměnnou je vypočítána hodnota korelace Pearson Correlation na určité hladině významnosti sig. pro daný počet pozorování n. V diplomové práci je pracováno s 95% stupněm spolehlivosti, tj. mělo by platit, že sig. < 0,05 a z důvodu multikolinearity by mezi exogenními proměnnými neměla být větší závislost než 0,8. Pokud je korelace mezi nezávislými veličinami příliš vysoká, měla by být prvně odstraněna proměnná s nejnižší vypovídací schopností. Další situace, která může nastat, je, že vypovídací schopnost vysvětlující proměnné je nevýznamná, a proto by měla být taktéž vyloučena z analyzovaného modelu. V prvním modelu jsou všechny závislosti menší než 0,8, proto není nutné provádět další úpravy. U druhého modelu je ovšem problém u proměnných
trend, úrokové sazby z nových hypotečních úvěrů a ER. Vzájemné korelace mezi veličinami jsou velmi vysoké, proto by měla být odstraněna veličina s nejmenší závislostí na vysvětlované proměnné, tj. trend. Velmi nízká hodnota je mezi vysvětlovanou proměnnou a vysvětlující proměnnou obecná míra nezaměstnanosti, proto i zde by bylo vhodné tuto veličinu odstranit.

Křížové korelace proměnných prvního modifikovaného modelu jsou zachyceny v příloze č. 9 a křížové korelace proměnných druhého modifikovaného modelu jsou zachyceny v příloze č. 10. Jednotlivé proměnné jsou posunuty v čase, aby vztah mezi vysvětlovanou a jednotlivými vysvětlujícími proměnnými byl co nejvýše. Naopak závislosti mezi vysvětlujícími proměnnými je snaha minimalizovat. V rámci proměnných vstupujících do prvního modelu došlo k časovému zpoždění u inflace o 5 období a růstu HDP o 1 období. U inflace je nejvyšší hodnota korelace vykazována při zpoždění o 4 období, ale kvůli lepší vypovídání schopnosti modelu je proměnná zpožděná právě o 5 období. V tomto případě jsou navíc hodnoty korelací téměř stejné (rozdíl je pouhých 0,001 j.). Proměnná HDP je zpožděna o 1 období, ve kterém je také vykazována právě nejvyšší hodnota korelace. U proměnných vstupujících do druhého modelu došlo k časovému zpoždění u inflace o 6 období a úrokových sazeb z nových hypotečních úvěrů o 3 období. Kvůli vysoké závislosti inflace s ER a umělou proměnnou není inflace posunuta do období nejvyšší korelace (zpoždění o 4 období), ale do období s dostatečně vysokou závislostí. Obdobná situace je také u proměnné úrokové sazby z nových hypotečních úvěrů, jenž je z důvodu vysoké závislosti s proměnnou inflace, hypoteční úvěry poskytnuté obyvatelstvu a ER zpožděna o 3 období.

Zjištěná zpoždění jsou také v souladu s ekonomickou teorií. Zejména u inflace a HDP je promítáno zpoždění, s jakým lidé reagují na změny v ekonomice, a že nějaký čas trvá, než si samotný vliv inflace a růstu HDP všimnou také na svých výplatách. Lidé také reagují se zpožděním na vývoj úrokových sazeb z nových hypotečních úvěrů. V tomto případě mohou nastat dvě situace, v případě poklesu sazeb lidé čekají na co největší pokles a sjednávají si nové hypoteční úvěry, nebo staré hypoteční úvěry (po konci fixace) refinancují. Druhá situace nastává v případě růstu těchto sazeb, kdy zejména u hypoték s končící fixací dochází ke sjednání nové výše úrokových sazeb, které později lidě nejsou schopni spláct.

77
4.3.2 Odhad lineárního regresního modelu

Parametry obou lineárních regresních modelů jsou odhadnuty pomocí metody nejméně čtverců, která je blíže popsána v teoretické části 3.3.2. Odhad lineárního regresního modelu je proveden pro každý model zvlášť.

Nejdříve jsou z obou analyzovaných modelů postupně odstraněny statisticky nevýznamné proměnné a konečný model je ten, ve kterém jsou všechny proměnné statisticky významné na 5% hladině významnosti. Postup zvolený pro odstranění statisticky nevýznamné proměnné prvního modifikovaného modelu (4.10) je uveden v Příloze č. 11. Druhý modifikovaný model (4.11) je v Příloze č. 12 dále upraven na dvě varianty a vybrána je ta s vyšší vypovídací schopností (R^2). Úprava obou modelů je také v souladu s korelační analýzou. První model je popsán vztahem

\[
growth_1 HS = \beta_2 \cdot \pi_{t-5} + \beta_3 \cdot \growth HDP_{t-1} + \beta_4 \cdot N_t + \beta_5 \cdot \diff H_t + \beta_6 \cdot \trend_t + \epsilon_t \tag{4.12}
\]

a druhý model je popsán vztahem

\[
growth_2 HS = \beta_2 \cdot \pi_{t-6} + \beta_3 \cdot \growth H_t + \beta_4 \cdot \iota_{t-3} + \beta_5 \cdot \ER_t + \epsilon_t . \tag{4.13}
\]

Z důvodu lepší přehlednosti je první model (4.12) značen v tabulkách jako M1.1 a druhý model (4.13) je značen jako M2.1. Nakonec je pro každý model zvlášť proveden odhad, přičemž výsledky odhadu jednotlivých parametrů jsou zachyceny v Tab. 4.2 pro první model a Tab. 4.3 pro druhý model.

<table>
<thead>
<tr>
<th>Koeficienty(^a) M1.1</th>
<th>Nenormalizované</th>
<th>Standardizované</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
<td>Směr. Odchylka</td>
</tr>
<tr>
<td>(\pi_{t-5})</td>
<td>0,01431</td>
<td>0,005</td>
</tr>
<tr>
<td>\text{growth HDP}_{t-1}</td>
<td>-1,05900</td>
<td>0,516</td>
</tr>
<tr>
<td>(N)</td>
<td>0,01279</td>
<td>0,002</td>
</tr>
<tr>
<td>\text{diff H}</td>
<td>2,299 \times 10^{-6}</td>
<td>5,186 \times 10^{-7}</td>
</tr>
<tr>
<td>\text{trend}</td>
<td>-0,000259</td>
<td>3,54 \times 10^{-4}</td>
</tr>
</tbody>
</table>

\(\text{a. Závislá proměnná: Hypoteční úvěry se selháním}\)

Odhad prvního modelu je

\[
growth_1 HS = 0,01431 \cdot \pi_{t-5} -1,059 \cdot \text{growth HDP}_{t-1} + 0,01279 \cdot N_t + 0,000002299 \cdot \text{diff H}_t -0,000259 \cdot \text{trend} + \epsilon_t . \tag{4.14}
\]
Tab. 4.3 Odhady parametrů druhého modelu (M2.1)

<table>
<thead>
<tr>
<th>Koeficienty* M2.1</th>
<th>Nestandardizované</th>
<th>Standardizované</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta</td>
<td>Směr. Odchylka</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>(\pi_{t-6})</td>
<td>0,01499</td>
<td>0,003</td>
<td>0,433</td>
<td>4,407</td>
</tr>
<tr>
<td>(\text{growth}_H)</td>
<td>1,07500</td>
<td>0,122</td>
<td>0,565</td>
<td>8,829</td>
</tr>
<tr>
<td>(i_{t-3})</td>
<td>0,02970</td>
<td>0,005</td>
<td>1,232</td>
<td>5,990</td>
</tr>
<tr>
<td>(\ln ER)</td>
<td>-0,07603</td>
<td>0,009</td>
<td>-1,425</td>
<td>-8,897</td>
</tr>
</tbody>
</table>

a. Závislá proměnná: Hypoteční úvěry se selháním

Odhad druhého modelu je

\[
growth_{HS}^2 = 0,01499 \cdot \pi_{t-6} + 1,075 \cdot \text{growth}_H + 0,0297 \cdot i_{t-3} + -0,07603 \cdot \ln ER + \varepsilon_i.\]

(4.15)

Ve všech následujících částech diplomové práce je vycházeno z modelů 4.12 a 4.13.

4.3.3 Koeficient determinace modelu

Princip a smysl výpočtu koeficientu determinace je uveden v teoretické části 3.3.3. Koeficienty determinace obou modelů jsou společně s koeficienty DW zachyceny v Tab. 4.4.

Tab. 4.4 Koeficienty determinace obou modelů (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R^2</th>
<th>Adjusted R^2</th>
<th>Std. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1a</td>
<td>0,896a</td>
<td>0,804</td>
<td>0,783</td>
<td>0,04914</td>
<td>2,085</td>
</tr>
<tr>
<td>M2.1b</td>
<td>0,962b</td>
<td>0,925</td>
<td>0,914</td>
<td>0,02982</td>
<td>2,337</td>
</tr>
</tbody>
</table>

a. Nezávislé proměnné: \(\pi_{t-5}, \text{growth}_H, \text{diff}_H, \text{trend} \).

Závislé proměnné: \(\ln ER \).

b. Nezávislé proměnné: \(\pi_{t-6}, \text{growth}_H, i_{t-3}, \ln ER \).

Závislé proměnné: \(\text{growth}_H \).

Hodnota koeficientu determinace pro první model je 80,4 % a pro druhý model 92,5 %. Jinými slovy variabilita hypotečních úvěrů v selhání je u prvního modelu vysvětlena z 80,4 % deterministickou části a z 19,6 % náhodnou chybou. Variabilita hypotečních úvěrů v selhání u druhého modelu je vysvětlena z 92,5 % deterministickou částí a z 7,5 % náhodnou chybou. Hodnoty koeficientů DW jsou v obou případech velmi blízko hodnotě 2 a lze očekávat splnění kritéria autokorelace.

V Tab. 4.5 a Tab. 4.6 jsou zachyceny výsledky testu ANOVA, který je proveden s cílem otestovat významnost modelů jako celku. V tabulkách jsou zachyceny hodnoty pro součty čtverců (SS) a RSS (jenž má být minimalizován). Dále je v tabulkách uvedena statistická významnost modelu zjištěná na základě F-testu, příslušná p-hodnota, počet stupňů
volnost \(df \) i průměr čtverce (MS), jenž je vyjádřen jako podíl součtu čtverců a stupňů volnosti za každou část.

Tab. 4.5 Anova\(^a\,b\) prvního modelu (M1.1)

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regrese</td>
<td>0,484</td>
<td>5</td>
<td>0,097</td>
<td>40,081</td>
<td>0,000</td>
</tr>
<tr>
<td>Rezidua</td>
<td>0,118</td>
<td>49</td>
<td>0,002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>0,602 (^a)</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* a. Závislá proměnná: growth_Hs.
* b. Nezávislé proměnné: \(\pi_1 \), growth_HDP_1, Obecná míra nezaměstnanosti, diff_H, trend.

U prvního modelu je SS roven hodnotě 0,484 a RSS roven hodnotě 0,118. Testová statistika je ve výši 40,081 a p-hodnota je menší než 0,05, tzn. první model je statisticky významný.

Tab. 4.6 Anova\(^a\,b\) druhého modelu (M2.1)

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regrese</td>
<td>0,317</td>
<td>4</td>
<td>0,079</td>
<td>89,215</td>
<td>0,000</td>
</tr>
<tr>
<td>Rezidua</td>
<td>0,026</td>
<td>29</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkem</td>
<td>0,343</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* a. Závislá proměnná: growth_Hs.
* b. Nezávislé proměnné: \(\pi_1 \), growth_HDP_1, Obecná míra nezaměstnanosti, growth_H, \(i_1 \), lnER, trend.

U druhého modelu je SS roven hodnotě 0,317 a RSS roven hodnotě 0,026. Testová statistika je ve výši 89,215 a p-hodnota je menší než 0,05, tzn. také druhý model je statisticky významný. Statistika reziduí obou modelů je uvedena v Tab. 4.7.

Tab. 4.7 Statistika reziduí\(^a\) obou modelů (M1.1 a M2.1)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Průměr</th>
<th>Směr. Odchylka</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predikovaná hodnota</td>
<td>-0,071</td>
<td>0,386</td>
<td>0,0602</td>
<td>0,074</td>
<td>54</td>
</tr>
<tr>
<td>Rezidua</td>
<td>-0,133</td>
<td>0,104</td>
<td>0,0001</td>
<td>0,047</td>
<td>54</td>
</tr>
<tr>
<td>St. Predikovaná hodnota</td>
<td>-1,780</td>
<td>4,424</td>
<td>0,0000</td>
<td>1,000</td>
<td>54</td>
</tr>
<tr>
<td>St. Rezidua</td>
<td>-2,704</td>
<td>2,120</td>
<td>0,0100</td>
<td>0,961</td>
<td>54</td>
</tr>
<tr>
<td>M2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predikovaná hodnota</td>
<td>-0,064</td>
<td>0,378</td>
<td>0,041</td>
<td>0,091</td>
<td>33</td>
</tr>
<tr>
<td>Rezidua</td>
<td>-0,060</td>
<td>0,066</td>
<td>0,000</td>
<td>0,028</td>
<td>33</td>
</tr>
<tr>
<td>St. Predikovaná hodnota</td>
<td>-1,160</td>
<td>3,724</td>
<td>0,000</td>
<td>1,000</td>
<td>33</td>
</tr>
<tr>
<td>St. Rezidua</td>
<td>-2,006</td>
<td>2,206</td>
<td>0,006</td>
<td>0,952</td>
<td>33</td>
</tr>
</tbody>
</table>

* a. Závislá proměnná: growth_Hs.

Z takto uvedených hodnot, lze jen těžko zjistit, zda se v obou případech jedná o normální rozdělení reziduí, proto je pro lepší porovnání hodnot sestrojen bodový graf a P-P Plot. Rozložení reziduí prvního modelu je zobrazeno v Grafu 4.9 a rozložení reziduí druhého modelu je v Grafu 4.10.
Rozdělení reziduí prvního modelu je vyhodnoceno jako náhodné. Hodnoty jsou až na jednu výjimku rozprostřeny v intervalu (-1,96;1,96) a v P-P Plotu jsou rezidua v rozložení, které poměrně kopíruje křivku, tj. soulad teoretické a naměřené kumulativní pravděpodobnosti.

Rozdělení reziduí druhého modelu lze také považovat za náhodné. Hodnoty jsou opět až na jednu výjimku rozprostřeny v intervalu (-1,96;1,96) a v P-P Plotu jsou rezidua v rozložení, které s mírným výkyvem kopíruje křivku, tj. shoda teoretické a naměřené kumulativní pravděpodobnosti.

4.4 Verifikace modelu

Verifikace modelu je důležitou částí analýzy, jež je složena ze tří částí. V první části je na základě t-testu a F-testu provedena statistická verifikace. Druhá část je zaměřena na ekonometrickou verifikaci předpokladů pro použité metody nejmenších čtverců.
Třetí a poslední část spočívá v ověření regresních parametrů a celého modelu s ohledem na předem stanovené ekonomické předpoklady. Ověření hypotéz u jednotlivých testů je provedeno zejména s využitím statistických tabulek a funkcí v programu MS Excel.

4.4.1 Statistická verifikace modelu

Statistická verifikace je pro oba modely uskutečněna přesně podle postupu, který je popsán v teoretické části 3.4.1 a je rozdělena do pěti navazujících kroků.

První krok spočívá ve formulaci hypotéz pro jednotlivé regresní koeficienty. Hypotézy jsou stanoveny stejně pro všechny regresní parametry modelu M1.1 a M2.1, přičemž je vycházeno ze vztahu 3.18. Obecně lze hypotézy zapsat jako

\[
H_0: \beta_2 = 0; \beta_3 = 0; \beta_4 = 0; \beta_5 = 0; \beta_6 = 0
\]

\[
H_A: \beta_2 \neq 0; \beta_3 \neq 0; \beta_4 \neq 0; \beta_5 \neq 0; \beta_6 \neq 0
\]

Druhým krokem je volba hladiny významnosti. Její nesignifikantní testy jsou počítány na 5\% hladině významnosti, tj. s 95\% spolehlivostí dojde ke správnému zamítnutí \(H_0 \).

Ve třetím kroku je pro každý parametr nalezena a porovnána kritická hodnota s vypočítanou t-statistikou. Přehled jednotlivých výpočtů je pro oba modely uveden v Tab. 4.8.

<table>
<thead>
<tr>
<th>Parametry M1.1</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet t-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_2)</td>
<td>TINV(0,05;54)</td>
<td>2,0049</td>
<td>(t_{\text{vyp}} = 0,01431/0,005)</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>TINV(0,05;54)</td>
<td>2,0049</td>
<td>(t_{\text{vyp}} = -1,059/0,516)</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>TINV(0,05;54)</td>
<td>2,0049</td>
<td>(t_{\text{vyp}} = 0,01279/0,002)</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>TINV(0,05;54)</td>
<td>2,0049</td>
<td>(t_{\text{vyp}} = 2,299 \times 10^{-7})</td>
</tr>
<tr>
<td>(\beta_6)</td>
<td>TINV(0,05;54)</td>
<td>2,0049</td>
<td>(t_{\text{vyp}} = -0,00259/3,54 \times 10^{-4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parametry M2.1</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet t-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_2)</td>
<td>TINV(0,05;33)</td>
<td>2,0345</td>
<td>(t_{\text{vyp}} = 0,01499/0,003)</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>TINV(0,05;33)</td>
<td>2,0345</td>
<td>(t_{\text{vyp}} = 1,075/0,122)</td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>TINV(0,05;33)</td>
<td>2,0345</td>
<td>(t_{\text{vyp}} = 0,0297/0,005)</td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>TINV(0,05;33)</td>
<td>2,0345</td>
<td>(t_{\text{vyp}} = -0,07603/0,009)</td>
</tr>
</tbody>
</table>

Z obou výše uvedených tabulek lze vyčíst, že u všech parametrů je zamítnuta \(H_0 \) a zároveň přijata \(H_A \). Všechny parametry jsou statisticky významné na 5\% hladině významnosti, protože je u všech těchto parametrů splněn vztah 3.21.

\[H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0 \]
\[H_A: \beta_2 \neq 0 \lor \beta_3 \neq 0 \lor \beta_4 \neq 0 \lor \beta_5 \neq 0 \lor \beta_6 \neq 0 \]

(4.17)

Nakonec je u pátého kroku nalezena a porovnána kritická hodnota s vypočítanou hodnotou F-statistiky. Přehled jednotlivých výpočtů je pro oba modely uveden v Tab. 4.9.

Tab. 4.9 Výpočet testových hodnot pro oba modely (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet F-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td>FINV(0,05;5;49)</td>
<td>2,4044</td>
<td>0,484/5 0,118/49</td>
</tr>
<tr>
<td>M2.1</td>
<td>FINV(0,05;4;29)</td>
<td>2,7014</td>
<td>0,317/4 0,026/29</td>
</tr>
</tbody>
</table>

Z výše uvedené tabulky je zřejmé, že u obou modelů je zamítnuta \(H_0 \) a zároveň přijata \(H_A \). Oba modely jsou statisticky významné na 5% hladině významnosti, protože je v obou případech platný vztah 3.25.

4.4.2 Ekonometrická verifikace

Obsahem ekonometrické verifikace je postupné testování autokorelace, heteroskedasticity a multikolinearity, které by se neměly v modelech vyskytovat. Posléze je také u obou modelů testována správnost specifikace a normální rozdělení reziduální složky.

4.4.2.1 Autokorelace

Pojem autokorelace a celý postup testování je podrobně popsán v teoretické části 3.4.2.1. Přítomnost autokorelace je zjišťována pomocí grafických a také analytických testů. Liniový graf a bodový diagram je pro první model zachycen v Grafu 4.11 a pro druhý model v Grafu 4.12.
Z liniových grafů obou modelů je patrné, že autokorelace prvního řádu by neměla být přítomna ani v jednom modelu, přičemž mimo konfidenční interval (-1,96; 1,96) jsou pouze dvě měření. Po vykreslení reziduí do bodových diagramů je na první pohled zřejmé, že mezi reziduí není zachycena žádná závislost, a proto v tomto modelu není prokázán výskyt autokorelace prvního řádu. Pro potvrzení této skutečnosti je využito grafů ACF a PCF. Grafické analýzy jsou pro první model zachyceny v Grafu 4.13 a pro druhý model v Grafu 4.14.
V prvním modelu není potvrzena přítomnost autokorelace prvního řádu. Z výše uvedených grafů je přesto patrná autokorelace vyšších řádu. Na základě testu ACF je zjištěna pozitivní autokorelace čtvrtého řádu a negativní korelace pátého řádu na 5% hladině významnosti včetně nepřímé autokorelace, tj. včetně všech ostatních vlivů jiných zpoždění.

Druhým grafickým testem PACF je změřena mírná pozitivní autokorelace u čtvrtého i šestnáctého řádu a negativní autokorelace u pátého řádu a na 5% hladině významnosti. V tomto testu jsou měřeny závislosti příslušného řádu \(n \), který je očištěn od ostatních nepřímých vlivů.

Graf 4.14 ACF a PACF graf reziduální složky druhého modelu (M2.1)

V druhém modelu také není potvrzena přítomnost autokorelace prvního řádu. Pomocí testu ACF je rozpoznána pozitivní autokorelace čtvrtého, osmého i dvanáctého řádu a negativní korelace pátého řádu na 5% hladině významnosti.
Na základě testu PACF je na 5% hladině významnosti potvrzena mírná negativní autokorelace pouze u pátého řádu. Ověření přítomnosti autokorelace prvního řádu není možné provést pomocí DW testu, protože jeden z předpokladů tohoto testu je, že analyzovaný model musí obsahovat konstantu.

Ve výšě provedených grafických testech není potvrzena přítomnost autokorelace prvního řádu a u reziduí obou modelů je předpokládána sériová nezávislost, tj. zcela náhodný charakter. V tomto případě není třeba modely dále upravovat, a proto je pokračováno v testování modelů na výskyt heteroskedasticity.

4.4.2.2 Heteroskedasticita

Výskyt heteroskedasticity je ověřen prostřednictvím bodového diagramu a analytického Whiteova obecného testu. Bodové diagramy jsou pro první model zachyceny v Příloze č. 14 a pro druhý model v Příloze č. 15.

V grafických testech je v úrovni 1,96² zobrazen konfidenční interval. U prvního i druhého modelu je tato horizontální linie překročena pouze u dvou kvadratických reziduí a rozložení reziduí je poměrně náhodné. Na základě uvedených grafů je předpokládána přítomnost homoskedasticity.

Pro analytický Whiteův obecný test, je z odhadu regresních modelů odvozen nový regresní model podle vztahu 3.35. Odvození nového regresního modelu lze pro první model zapsat jako

$$
\hat{\varepsilon}_i^2 = \alpha_1 + \alpha_2 \cdot \pi_{t-4} + \alpha_3 \cdot \text{growth}_{\text{HDP}}_{t-1} + \alpha_4 \cdot N_t + \alpha_5 \cdot \text{diff}_{\text{H}}_{t-1} +
+ \alpha_6 \cdot \text{trend}_{t} + \alpha_7 \cdot \pi_{t-4} + \alpha_8 \cdot \text{growth}_{\text{HDP}}_{2} + \alpha_9 \cdot N_t^2 + \alpha_{10} \cdot \text{diff}_{\text{H}}_{t-2} +
+ \alpha_{11} \cdot \text{trend}_{t}^2 + \alpha_{12} \cdot \pi_{t-4} \cdot \text{growth}_{\text{HDP}}_{t-1} + \alpha_{13} \cdot \pi_{t-4} \cdot N_t +
+ \alpha_{14} \cdot \pi_{t-4} \cdot \text{diff}_{\text{H}}_{t} + \alpha_{15} \cdot \pi_{t-4} \cdot \text{trend}_{t} + \alpha_{16} \cdot \text{growth}_{\text{HDP}}_{t-1} \cdot N_t +
+ \alpha_{17} \cdot \text{growth}_{\text{HDP}}_{t-1} \cdot \text{diff}_{\text{H}}_{t} + \alpha_{18} \cdot \text{growth}_{\text{HDP}}_{t-1} \cdot \text{trend}_{t} +
+ \alpha_{19} \cdot N_t \cdot \text{diff}_{\text{H}}_{t} + \alpha_{20} \cdot N_t \cdot \text{trend}_{t} + \alpha_{21} \cdot \text{diff}_{\text{H}}_{t} \cdot \text{trend}_{t},
$$

a pro druhý model jako

$$
\hat{\varepsilon}_i^2 = \alpha_1 + \alpha_2 \cdot \pi_{t-6} + \alpha_3 \cdot \text{growth}_{\text{H}}_{t} + \alpha_4 \cdot i_{t-3} + \alpha_5 \cdot \text{ER} + \alpha_6 \cdot \pi_{t-6}^2 +
+ \alpha_7 \cdot \text{growth}_{\text{H}}_{t}^2 + \alpha_8 \cdot i_{t-3}^2 + \alpha_9 \cdot \text{ER}^2 + \alpha_{10} \cdot \pi_{t-6} \cdot \text{growth}_{\text{H}}_{t} +
+ \alpha_{11} \cdot \pi_{t-6} \cdot i_{t-3} + \alpha_{12} \cdot \pi_{t-6} \cdot \text{ER} + \alpha_{13} \cdot \text{growth}_{\text{H}}_{t} \cdot i_{t-3} +
+ \alpha_{14} \cdot \text{growth}_{\text{H}}_{t} \cdot \text{ER} + \alpha_{15} \cdot i_{t-3} \cdot \text{ER},
$$

86
Následně jsou podle vztahu 3.36 formulovány hypotézy, které jsou pro výše uvedené modely definovány vztahy

\[H_0: \alpha_2 = ... = \alpha_{15} = 0 = \alpha_{21} = 0, \]
\[H_A: \alpha_2 \neq 0 \lor ... \lor \alpha_{15} \neq 0 \lor \alpha_{21} \neq 0. \]

(4.20)

Nakonec je na základě vztahu 3.37 vypočítána hodnota chí-statistiky a kritická hodnota. Tyto hodnoty jsou podle vztahu 3.38 porovnány a přehled výpočtů je pro oba modely uveden v Tab. 4.10. Výpočet koeeficientu determinace nového modelu je proveden pomocí metody nejmenších čtverců. Na základě této metody jsou ve statistickém softwaru SPPS vyhodnoceny také významnosti jednotlivých parametrů a v případě druhého modelu tak došlo k vyloučení 3 proměnných.

Tab. 4.10 Whiteův test - výpočet testových hodnot pro oba nové modely (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet chí-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1w</td>
<td>CHIINV(0,05;20)</td>
<td>31,4104</td>
<td>$\chi^2_{vyp} = 54 \cdot 0,505$, 27,2700</td>
</tr>
<tr>
<td>M2.2w</td>
<td>CHIINV(0,05;11)</td>
<td>19,6751</td>
<td>$\chi^2_{vyp} = 32 \cdot 0,376$, 12,0320</td>
</tr>
</tbody>
</table>

Z výše uvedené tabulky je zřejmé, že na základě testové statistiky a vztahu 3.38 je u obou modelů významnosti přijata H_0 na 5% hladině významnosti a v modelech je potvrzen stabilní vývoj reziduální složky, tj. homoskedasticita.

4.4.2.3 Multikolinearita

Multikolinearita je testována pomocí analytických technik, které jsou blíže popsány v teoretické části 3.4.2.3.

Vzájemné vztahy mezi veličinami jsou zachyceny v korelační matici zvlášť pro každý model. Obě tyto korelační matice jsou zobrazeny v Příloze č. 13. Hraniční míra korelace mezi vysvětlujícími proměnnými není ani v jednom případě větší než hodnota 0,8, přesto je v druhém modelu mezi proměnnými úrokové sazby z nových hypotečních úvěrů a ER vykazována poměrně vysoká párová korelace (-0,779). Jelikož však nedošlo k překročení hraniční hodnoty, není ani v jednom modelu potvrzen výskyt multikolinearity.

Vícenásobný koeeficient determinace je počítán pro všechny vysvětlující proměnné. Nejdříve pro každou proměnnou sestrojen nový regresní model dle vztahu 3.39. Přehled těchto modelů je zachycen v Tab. 4.11.
Následně jsou vymezeny hypotézy. Hypotézy stanovené pro regresní modely 1M1 až 5M1 a 1M2 až 4M2 jsou definovány jako

\[H_{01}: \text{v modelu není významná multikolinearita}, \]
\[H_{4i}: \text{v modelu je významná multikolinearita}. \]

(4.21)

Nakonec je pro každý model vypočítána příslušná F-statistika podle vztahu 3.41, která je porovnána s kritickou hodnotou. Příhled jednotlivých výpočtů je zachycen v Tab. 4.12.

Tab. 4.12 Vícenásobný R² - výpočet testových hodnot pro jednotlivé proměnné

<table>
<thead>
<tr>
<th>Model</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet F-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M1</td>
<td>FINV(0.05;4;50) 2,5572</td>
<td>F_{vyp} = 0,718/4(1-0,718)/50</td>
<td>31,8262</td>
</tr>
<tr>
<td>1M2</td>
<td>FINV(0.05;4;50) 2,5572</td>
<td>F_{vyp} = 0,318/4(1-0,318)/50</td>
<td>5,8284</td>
</tr>
<tr>
<td>1M3</td>
<td>FINV(0.05;4;50) 2,5572</td>
<td>F_{vyp} = 0,823/4(1-0,823)/50</td>
<td>58,1215</td>
</tr>
<tr>
<td>1M4</td>
<td>FINV(0.05;4;50) 2,5572</td>
<td>F_{vyp} = 0,636/4(1-0,636)/50</td>
<td>21,8407</td>
</tr>
<tr>
<td>1M5</td>
<td>FINV(0.05;4;50) 2,5572</td>
<td>F_{vyp} = 0,711/4(1-0,711)/50</td>
<td>30,7526</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet F-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M1</td>
<td>FINV(0.05;3;30) 2,9223</td>
<td>F_{vyp} = 0,731/3(1-0,731)/30</td>
<td>27,1747</td>
</tr>
<tr>
<td>2M2</td>
<td>FINV(0.05;3;30) 2,9223</td>
<td>F_{vyp} = 0,367/3(1-0,367)/30</td>
<td>5,7978</td>
</tr>
<tr>
<td>2M3</td>
<td>FINV(0.05;3;30) 2,9223</td>
<td>F_{vyp} = 0,939/3(1-0,939)/30</td>
<td>153,934</td>
</tr>
<tr>
<td>2M4</td>
<td>FINV(0.05;3;30) 2,9223</td>
<td>F_{vyp} = 0,899/3(1-0,899)/30</td>
<td>89,0099</td>
</tr>
</tbody>
</table>

U všech výše zkoumaných modelů je na 5% hladině významnosti zamítnuta H₀, tj. v modelu je patrný výskyt statisticky významné multikolinearity. Přičemž platí, že čím více je hodnota F-statistiky vzdálena od kritické, tím vyšší je multikolinearita.

Celková míra korelovatelnosti je analyzována pomocí VIF, TOL a CI. Při výpočtu je u VIF vycházeno z rovnice 3.42, u TOL z rovnice 3.43 a u CI z rovnice 3.44. Jednotlivé
hodnoty jsou vypočteny u obou modelů pro všechny proměnné. Přehled výpočtů je uveden v Tab. 4.13.

Tab. 4.13 Vícenásobný R² - výpočet VIF, TOL a CI jednotlivých proměnných

<table>
<thead>
<tr>
<th>M1.1</th>
<th>VIF</th>
<th>TOL</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M1</td>
<td>VIF = (1 - 0,718)⁻¹</td>
<td>3,546</td>
<td>0,2820</td>
</tr>
<tr>
<td>1M2</td>
<td>VIF = (1 - 0,318)⁻¹</td>
<td>1,466</td>
<td>0,6820</td>
</tr>
<tr>
<td>1M3</td>
<td>VIF = (1 - 0,823)⁻¹</td>
<td>5,650</td>
<td>0,1770</td>
</tr>
<tr>
<td>1M4</td>
<td>VIF = (1 - 0,636)⁻¹</td>
<td>2,747</td>
<td>0,3640</td>
</tr>
<tr>
<td>1M5</td>
<td>VIF = (1 - 0,711)⁻¹</td>
<td>3,458</td>
<td>0,2890</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M2.1</th>
<th>VIF</th>
<th>TOL</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M1</td>
<td>VIF = (1 - 0,731)⁻¹</td>
<td>3,717</td>
<td>0,2690</td>
</tr>
<tr>
<td>2M2</td>
<td>VIF = (1 - 0,367)⁻¹</td>
<td>1,580</td>
<td>0,6330</td>
</tr>
<tr>
<td>2M3</td>
<td>VIF = (1 - 0,939)⁻¹</td>
<td>16,393</td>
<td>0,0610</td>
</tr>
<tr>
<td>2M4</td>
<td>VIF = (1 - 0,899)⁻¹</td>
<td>9,901</td>
<td>0,1010</td>
</tr>
</tbody>
</table>

Ve výše uvedených testech platí, že čím vyšší je hodnota VIF i CI, tím vyšší je také multikolinearita. Naopak čím vyšší hodnota je vykazována u TOL, tím je multikolinearita nižší. Téměř ve všech případech je hodnota multikolinearity poměrně nízká. Vyšší hodnota je vykazována pouze v druhém modelu u proměnných úrokové sazby z nových hypotečních úvěrů a ER.

V rámci párové korelace je mezi těmito veličinami vykazována hodnota nižší než 0,8 a v rámci koeficientu CI je pro obě proměnné zjištěna velmi nízká hodnota. Navíc jsou obě vysvětlující proměnné statisticky důležité, proto jsou v modelu ponechány, ale je přípustné malé zkreslení. Z ekonomického hlediska jsou tyto dvě veličiny na sobě nezávislé a vysoká korelace může být způsobena poměrně krátkým testovacím obdobím. Obecně je u modelů s vyšší multikolinearitou problém s odhady parametrů, které mohou být více citlivé na změny v vzorcích (souborech), specifikaci modelu a mohou mít větší rozptyl i kovarianci. Navíc je problematičtější separovat vliv jednotlivých vysvětlujících proměnných na vysvětlovanou proměnnou, což může způsobovat problém při interpretaci regresních parametrů.

4.4.2.4 Specifikace modelu

Význam správné specifikace modelu je objasněn v teoretické části 3.4.2.4. Testování chybné specifikace je provedeno pomocí grafické analýzy a analytického testu. Grafická analýza standardizovaných reziduí v čase je pro oba modely provedena v liniovém Grafu 4.15.
V obou grafích je zkoumán vývoj standardizovaných reziduí v čase. Standardizovaná rezidua obou modelů jsou až na dvě odlehlé hodnoty rozprostřena v konfidenčním intervalu \((-1,96;1,96)\), přičemž rozmístění reziduí je poměrně náhodné. V každém modelu jsou nalezeny rezidua mimo interval, ale z vývoje reziduí není patrná chybná specifikace modelu.

Analytické ověření modelů je provedeno pomocí Ramsey RESET testu. V prvním kroku jsou stanoveny následující hypotézy pro modely M1.1 a M2.1

\[
\begin{align*}
H_0 &: \text{ model je správně specifikován}, \\
H_A &: \text{ model není správně specifikován}.
\end{align*}
\] (4.22)

Druhý krok spočívá ve výpočtu příslušné F-statistiky pomocí rovnice 3.46 a stanovení kritické hodnoty. Následně jsou obě hodnoty porovnány podle vztahu .. Výpočty testových hodnot jsou zachyceny v Tab. 4.14.

Tab. 4.14 RESET test - výpočet testových hodnot pro oba nové modely (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>Výpočet kritické hodnoty</th>
<th>Výpočet F-statistiky</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td>FINV(0,05;2;47) 3,1951</td>
<td>(F_{vyp} = \frac{(0,808930-0,803534)/2}{(1-0,808930)/47}) 0,6637</td>
<td>(F_{krit} > F_{vyp})</td>
</tr>
<tr>
<td>M2.1</td>
<td>FINV(0,05;2;27) 3,3541</td>
<td>(F_{vyp} = \frac{(0,92902-0,92484)/2}{(1-0,92902)/27}) 0,7952</td>
<td>(F_{krit} > F_{vyp})</td>
</tr>
</tbody>
</table>

Z výše uvedených výpočtů vyplývá, že u obou modelů je na 5% hladině významnosti přijata \(H_0 \) a oba modely jsou tedy správně specifikovány.

4.4.2.5 Normalita reziduí

Normalita reziduí je blíže charakterizována v teoretické části 3.4.2.5. V této praktické části je normalita reziduí testována jak graficky, tak analyticky.
Grafické testy jsou prováděny pomocí histogramu rozdělení četností reziduí, které jsou porovnány s Gaussovou teoretickou křivkou a pravděpodobnostními P-P i Q-Q grafy. První model je testován v Grafu 4.16 až 4.17 a druhý model v Grafu 4.18 až 4.19.

Graf 4.16 Pravděpodobnostní P-P a Q-Q grafy prvního modelu (M1.1)

Podle výše uvedených grafů je zřejmé, že rozdělení reziduální složky prvního modelu je náhodné, protože hodnoty v P-P Plotu i Q-Q Plotu jsou v rozložení, které kopíruje křivku. V obou grafech je zřejmý soulad teoretické kumulativní pravděpodobnosti s naměřenou pravděpodobností a soulad teoretických kvantilů s naměřenými kvantily.

Graf 4.17 Histogram rozdělení četností reziduí prvního modelu (M1.1)

Histogram rozdělení četností náhodné složky prvního modelu je v rozložení, které velmi dobře kopíruje Gaussovou teoretickou křivku. Z výše uvedeného histogramu lze vyčíst, že střední hodnota je rovna 0,01 a směrodatná odchylka je 0,961. Na základě těchto údajů je opět potvrzeno, že rozložení reziduí v modelu je náhodné.
Graf 4.18 Pravděpodobnostní P-P a Q-Q grafy druhého modelu (M2.1)

I zde lze na základě výše uvedených grafů rozdělení reziduální složky druhého modelu považovat za náhodné. V P-P Plotu i Q-Q Plotu jsou hodnoty v rozložení, které s menšími výchylkami kopíruje křivku. V obou grafech je vidět dostatečná shoda teoretické kumulativní pravděpodobnosti s naměřenou pravděpodobností a přijatelná shoda teoretických kvantilů s naměřenými kvantily.

Graf 4.19 Histogramu rozdělení četností reziduí druhého modelu (M2.1)

Histogram rozdělení četností náhodné složky druhého modelu není vzhledem ke Gaussové teoretické křivce nejhorší. Z grafu lze vyčíst, že střední hodnota je rovna 0,01 a směrodatná odchylka je 0,962. Na základě těchto údajů je předpokládáno, že rozložení reziduí v modelu je náhodné.

Analytický test použitý k testování normality reziduí je neparametrický, jednovýběrový KS test. Nejdříve jsou formulovány následující hypotézy pro modely M1.1 a M2.1.
\(H_0: F_n(x) \) odpovídá \(\phi(x) \),
\(H_A: F_n(x) \) neodpovídá \(\phi(x) \).

(4.23)

Následně je pro každý model podle vztahu 3.49 stanovena kritická hodnota a vypočítána hodnota testové statistiky pro KS test. Poté jsou testové hodnoty na základě vztahu 3.50 porovnány a výsledné hodnoty jsou zachyceny v Tab. 4.15. Přičemž největší diference mezi empirickou a teoretickou funkcí \((D) \) je vypočítán pomocí SPSS v Příloze č. 16.

Tab. 4.15 KS test - výpočet testových hodnot pro oba modely (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>Model</th>
<th>Kritická hodnota</th>
<th>Výpočet statistiky KS</th>
<th>(\alpha_{vyp})</th>
<th>Porovnání</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td>(z_{krit}=1,96)</td>
<td>(\alpha_{krit}=0,05)</td>
<td>KS=(\sqrt{54\cdot0,053})</td>
<td>0,3895</td>
</tr>
<tr>
<td>M2.1</td>
<td>(z_{krit}=1,96)</td>
<td>(\alpha_{krit}=0,05)</td>
<td>KS=(\sqrt{33\cdot0,095})</td>
<td>0,5457</td>
</tr>
</tbody>
</table>

Z výše uvedených výpočtů a porovnání kritické hodnoty (odpovídající normálnímu rozdělení) s vypočítanou je u obou modélů na 5% hladině významnosti přijata \(H_0 \), tj. distribuční funkce rozdělení náhodného výběru odpovídá teoretické distribuční funkci očekávaného rozdělení. Platnost \(H_0 \) je také ověřena na základě srovnání vypočítané p-hodnoty, která je vyšší než p-hodnota kritická.

4.4.3 Ekonomická verifikace modelu

Podstata ekonomické verifikace je blíže popsána v teoretické části práce 3.4.3. První část ekonometrické verifikace je věnována obecnému zhodnocení vypovidací schopnosti modelů a odhadu jednotlivých parametrů. V druhé části jsou objasněny vztahy mezi vysvětlovanou proměnnou a jednotlivými vysvětlujícími proměnnými na základě nestandardizovaných odhadů. Síla vlivu exogenních proměnných na endogenní proměnnou je posouzena podle standardizovaných odhadů a konečná interpretace výsledků je provedena na základě nestandardizovaných odhadů.

Vypovidací schopnost konečných modelů je dostatečná. U prvního modelu je variabilita hypotečních úvěrů v selhání vysvětlena z 80,4 % deterministickou částí a z 19,6 % náhodnou chybou. V rámci druhého modelu je variabilita hypotečních úvěrů v selhání vysvětlena z 92,5 % deterministickou částí a z 7,5 % náhodnou chybou. Odhad jednotlivých parametrů je proveden s použitím metody nejmenších čtverců, přičemž jsou splněny všechny základní předpoklady pro použití této metody.

Výsledné odhady jsou odvozeny ze vztahů 4.14 a 4.15 s jednou malou změnou. Hodnota vysvětlované proměnné je v obou případech vyjádřena v jednotkách a z důvodu lepšího srovnání je tato proměnná vynásobena stem, díky čemuž může být interpretována jako ostatní proměnné v procentech. Tato úprava je taktéž provedena u všech nezávislých
proměnných vyjádřených v růstech. Nutno podotknout, že žádné vztahy nejsou změněny, pouze došlo k převedení hodnot do srovnatelné podoby. Výsledný odhad prvního modelu je

\[
growth_1 HS = 1,431 \cdot \pi_{t-5} - 1,059 \cdot growth_HDP_{t-1} + 1,279 \cdot N_t + 0,0002299 \cdot diff_H_t - 0,259 \cdot trend_t + \varepsilon_i
\]

(4.24)

a výsledný odhad druhého modelu je

\[
growth_2 HS = 1,499 \cdot \pi_{t-6} + 1,075 \cdot growth_H_t + 2,970 \cdot i_{t-3} - 7,603 \cdot \ln ER_t + \varepsilon_i.
\]

(4.25)

V první hypotéze je uveden pozitivní vztah mezi inflací a hypotečními úvěry v selhání. Do nákladů na hypoteční úvěr je zahrnuto očekávání ohledně budoucího vývoje inflace. V situaci, kdy je očekáván růst inflace rostou také náklady spojené s hypotečními úvěry a pro klienty je problematiky vyšší tvrdý

Významný problém je, že si domácnosti při sjednávání hypotečních úvěrů často neuvědomují, že po skončení doby fixace mohou být úroky mnohem vyšší. Další problém je, že s rostoucí inflací rovněž klesají reálné příjmy domácností, kterým poté zbývá méně prostředků na splácení úvěrů. Ekonomický vztah mezi proměnnými je potvrzen u obou zkoumaných modelů. Z prvního výsledného modelu lze vyčíst, že pokud vzroste o 1 p. b. proměnná inflace, která je v čase zpožděná o 5 čtvrtletí, vzroste o 1,431 % hodnota hypotečních úvěrů v selhání, ceteris paribus. U druhého výsledného modelu je vztah obdobný. Vzroste-li o 1 p. b. proměnná inflace, která je v čase zpožděná o 6 čtvrtletí, vzroste o 1,499 % hodnota hypotečních úvěrů v selhání, ceteris paribus. Rozdílné časové posuny inflace jsou způsobeny rozdílnými vlastnostmi obou modelů. Z ekonomického hlediska jsou tyto posuny správné, protože lidé reagují na reálné snížení mezd a změny v úrokových sazbách se zpožděním. Inflace je statisticky významná v obou modelech, přestože v prvním výsledném modelu je mezi inflací a hypotečními úvěry v selhání vykovován druhý nejslabší vztah. Podobná situace je také u druhého výsledného modelu, kde je mezi inflací a hypotečními úvěry v selhání vykovován nejslabší vztah (oproti všem ostatním statisticky významným veličinám).

Vztah mezi HDP a hypotečními úvěry v selhání je z ekonomického hlediska určen jako záporný, protože s rostoucím výstupem ekonomiky zpravidla roste bohatství lidí a zároveň klesá množství nesplacených hypotečních úvěrů. Platnost tohoto vztahu je
potvrzena, neboť vzroste-li v předcházejícím čtvrtletí HDP o 1 %, pak u prvního výsledného modelu poklesnou hypoteční úvěry v selhání o –1,059 %, ceteris paribus. Vliv HDP na hypoteční úvěry v selhání je nejnižší ze všech zkoumaných veličin, přesto je v prvním modelu stále statisticky významný. Z druhého výsledného modelu je veličina HDP vyřazena z důvodu statistické nevýznamnosti. Hlavní důvod slabších vazeb mezi HDP a hypotečními úvěry v selhání je, že vývoj závislé proměnné je sledován pouze za sektor domácností, kdežto proměnná HDP je součtem spotřebních výdajů domácností, investic firem, vládních výdajů a čistého exportu. V tomto případě domácnosti představují pouze určité procento na celkově vyprodukovaném HDP, ve kterém je obsaženo mnoho dalších vlivů. Časové zpoždění HDP o jedno čtvrtletí je v souladu s ekonomickou teorií, jelikož lidé reagují na vývoj ekonomiky s určitým zpožděním.

Mezi obecnou mírou nezaměstnanosti a hypotečními úvěry v selhání je stanoven kladný vztah. S rostoucí nezaměstnaností přibývají lidé s finančními potížemi, pro něž je problematické splácet své hypoteční úvěry. Pozitivní vztah je prokázán u prvního výsledného modelu, neboť vzroste-li nezaměstnanost o 1 p. b., pak hypoteční úvěry v selhání vzroste o 1,279 %, ceteris paribus. V prvním výsledném modelu je veličina obecná míra nezaměstnanosti druhou nejdůležitější vysvětlující proměnnou, přestože v druhém výsledném modelu je stejná veličina vyloučena z důvodu statistické nevýznamnosti. Tato situace je způsobena rozdílnými vlastnostmi obou modelů. Obecná míra nezaměstnanosti není v čase posunuta, což má také ekonomické opodstatnění. Nezaměstnaní lidé často odkládají platby za své hypoteční úvěry, protože s nedostatkem finančních prostředků upřednostňují běžnou spotřebu, tj. jídlo, voda, plyn, elektřina atd.

Z ekonomického hlediska je očekáván kladný vztah mezi proměnnou hypoteční úvěry poskytnuté domácnostem a hypotečních úvěry v selhání. Obecně jsou hypoteční úvěry děleny na hypoteční úvěry v selhání a bez selhání. V případě růstu celkového objemu poskytnutých hypotečních úvěrů, roste také množství hypotečních úvěrů v selhání. Tento vztah je potvrzen, ale interpretace je u každého modelu odlišná. V případě prvního výsledného modelu je absolutním nárůstem hypotečních úvěrů o 1 mil. Kč způsoben vzrůst hypotečních úvěrů v selhání o 0,0002299 %, ceteris paribus. U druhého výsledného modelu je 1 % růst hypotečních úvěrů doprovázen 1,075 % růstem hypotečních úvěrů v selhání, ceteris paribus. V obou modelech je tato veličina vyhodnocena jako třetí nejvýznamnější, která má okamžitý vliv na závislou proměnnou, což vyplývá i z její ekonomické charakteristiky.

Mezi proměnnými ER a hypoteční úvěry v selhání je formulován negativní vztah. Banky vykazují hodnoty ukazatel ER pouze okolo 5 % až 15 %. Důvodem je, že větší část aktiv tvoří poskytnuté úvěry, které jsou financovány hlavně cizími zdroji. U bank, jež půjčují větší množství peněz klientům bez důkladného prověření (jako tomu bylo před rokem 2008 v USA), klesá hodnota ukazatele a zároveň postupně vzrůstá množství nesplácených hypotečních úvěrů. Stejně jako u předchozí veličiny je i zde z důvodu kratší časové řady proměnná ER analyzována pouze v druhém výsledném modelu. Záporný vztah mezi závislou proměnnou a ER je potvrzen, jelikož s 1 % růstem ER poklesne průměrný růst hypotečních úvěrů v selhání o -7,603 %, ceteris paribus. Na základě provedeného odhadu má daná veličina největší vliv na vývoj hypotečních úvěrů v selhání. Tento výsledek vyplývá z přísnějších pravidel na velikost kmenového kapitálu bank, tj. Tier 1, který je spojen právě s poslední ekonomickou krizí. V této souvislosti banky kladou větší důraz na důkladné prověření bonity klientů. Záporný vztah mezi proměnnými je také prokázán v odborném článku od Klein (2013) „Non-Performing Loans in CESEE: Determinants and Macroeconomic Performance“, ovšem v této studii je prokázán pouze slabý vliv na analyzovanou proměnnou. Rozdíl je způsoben jednak odlišnými proměnnými v modelech a jednak tím, že v této studii je pracováno s 16 největšími bankami a daty z oblasti střední i východní Evropy.

Proměnná trend má v případě prvního výsledného modelu okamžitý a největší vliv na analyzovanou závislou proměnnou. Dané tvrzení je v souladu s praxí, protože od chvíle, kdy zákon, nařízení, či vyhláška ČNB vejde v platnost, je závazná pro všechny finanční instituce v ČR, kterých se dané nařízení týká.

Závěrečné vyhodnocení všech hypotéz je v souladu s ekonomickou teorií. Nyní může být přikročeno k samotné predice závislé proměnné.

4.5 Predikce proměnných

Prvním krokem predikce je vytvoření bodové predikce hodnot pro jednotlivé vysvětlující proměnné. Tyto hodnoty jsou uvedeny v Tab. 4.16.

Tab. 4.16 Bodová predikce vysvětlujících proměnných výsledných modelů

<table>
<thead>
<tr>
<th>M1.1 Proměnný / Období</th>
<th>(\pi_{t-4})</th>
<th>growth HDP_{t-1}</th>
<th>(N_t)</th>
<th>diff H_t</th>
<th>trend_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2016</td>
<td>0,0814</td>
<td>-0,9835</td>
<td>3,8000</td>
<td>24308,5020</td>
<td>59,000</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>0,3244</td>
<td>0,8689</td>
<td>3,9000</td>
<td>24720,5105</td>
<td>60,000</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>0,0805</td>
<td>0,8833</td>
<td>3,6000</td>
<td>25132,5190</td>
<td>61,000</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>0,4854</td>
<td>0,8978</td>
<td>3,6000</td>
<td>25544,5275</td>
<td>62,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M2.1 Proměnný / Období</th>
<th>(\pi_{t-6})</th>
<th>growth H_t</th>
<th>(h_{-3})</th>
<th>ln ER_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2016</td>
<td>0,8117</td>
<td>3,3986</td>
<td>2,1400</td>
<td>2,8919</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>0,4062</td>
<td>3,4836</td>
<td>2,0500</td>
<td>2,9642</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>0,0814</td>
<td>3,5686</td>
<td>2,0000</td>
<td>3,0365</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>0,3244</td>
<td>3,6535</td>
<td>1,9600</td>
<td>3,1088</td>
</tr>
</tbody>
</table>
Predikce hodnot, které byly transformovány, jsou vytvořeny na základě funkce „curve estimation“ v programu SPSS. Hodnoty zpožděných proměnných u inflace jsou v obou případech dosazené z reálných hodnot, které jsou díky časovému posunu známé. Stejně je tomu i u proměnné HDP. V případě HDP je ovšem známa pouze první hodnota a ostatní hodnoty jsou dosazeny na základě predikce v SPSS. U proměnné úrokové sazby z nových hypotečních úvěrů jsou známé hodnoty za první tři období a poslední hodnota je zjištěna na základě predikce ČNB. Budoucí vývoj obecné míry nezaměstnanosti je taktéž čerpán z prognózy ČNB zveřejněné 2. února 2017.

V druhém kroku je provedena intervalová predikce. Nejdříve jsou příslušné bodové predikce jednotlivých proměnných nakopírovány pod původní časovou řadu. Následně jsou před provedením lineární regresní analýzy v nabídce „SAVE“ zatrženy nestandardizované predikované hodnoty, mean a individual. Nakonec je provedena intervalová predikce jednotlivých proměnných. V rámci intervalové predikce je vypočtena hodnota odhadu vysvětlující proměnné označené jako „PRE“, dolní i horní hranice konfidenčního intervalu pro střední hodnoty označené jako „LMCI“ a „UMCI“. Dolní i horní hranice konfidenčního intervalu pro individuální hodnoty jsou označeny jako „LICI“ a „UICI“. Princip výpočtu konfidenčního intervalu je uveden pro střední hodnoty ve vztahu 3.51 a pro individuální hodnoty ve vztahu 3.53.

Tab. 4.17 Intervalová predikce vysvětlujících proměnných výsledných modelů

<table>
<thead>
<tr>
<th>Výsledný M1.1 Proměnné / Období</th>
<th>PRE</th>
<th>LMCI</th>
<th>UMCI</th>
<th>LICI</th>
<th>UICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2016</td>
<td>-3,6550</td>
<td>-7,4853</td>
<td>0,1754</td>
<td>-14,2461</td>
<td>6,9361</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>-5,3051</td>
<td>-8,7863</td>
<td>-1,8240</td>
<td>-15,7750</td>
<td>5,1647</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>-6,2172</td>
<td>-9,9155</td>
<td>-2,5188</td>
<td>-16,7613</td>
<td>4,3269</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>-5,8172</td>
<td>-9,4586</td>
<td>-2,1757</td>
<td>-16,3414</td>
<td>4,7071</td>
</tr>
<tr>
<td>Výsledný M2.1 Proměnné / Období</td>
<td>PRE</td>
<td>LMCI</td>
<td>UMCI</td>
<td>LICI</td>
<td>UICI</td>
</tr>
<tr>
<td>Q4 2016</td>
<td>-10,7639</td>
<td>-14,2908</td>
<td>-7,2371</td>
<td>-17,8095</td>
<td>-3,7184</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>-12,0974</td>
<td>-15,7847</td>
<td>-8,4101</td>
<td>-19,2246</td>
<td>-4,9702</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>-13,1911</td>
<td>-17,0249</td>
<td>-9,3573</td>
<td>-20,3952</td>
<td>-5,9870</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>-13,4041</td>
<td>-17,4130</td>
<td>-9,3952</td>
<td>-20,7029</td>
<td>-6,1053</td>
</tr>
</tbody>
</table>

Z výše uvedené tabulky je zřejmé, že podle obou modelů je očekáván další pokles hypotečních úvěrů v selhání. Podle prvního modelu (M1.1) je očekáváno mírnější tempo poklesu než v případě druhého modelu (M2.1). Výsledná bodová a intervalová predikce je provedena na základě váženého průměru predikcí jednotlivých modelů. Oba modely mají vysokou vypovídací schopnost, proto jsou rizikové váhy zvoleny v závislosti na proměnných, se kterými je v modelech pracováno. Vyšší vypovídací schopnost je zjištěna u druhého výsledného modelu, ve kterém je navíc pracováno i s proměnnými vztaženými
k bankovnímu sektoru. V prvním výsledném modelu je naopak pracováno pouze s obecnými makroekonomickými veličinami, ale za delší časové období. Na základě zvážení těchto skutečností byly zvoleny rizikové váhy pro první výsledný model ve výši 40 % a pro druhý výsledný model ve výši 60 %. Konečné výsledky predikce jsou shrnuty v Tab. 4.18.

Tab. 4.18 Roční predikce vývoje hypotečních úvěrů v selhání

<table>
<thead>
<tr>
<th>Proměnné / Období</th>
<th>PRE</th>
<th>LMCI</th>
<th>UMCI</th>
<th>LICI</th>
<th>UICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4 2016</td>
<td>-6,4986</td>
<td>-10,2075</td>
<td>-2,7896</td>
<td>-15,6714</td>
<td>2,6743</td>
</tr>
<tr>
<td>Q1 2017</td>
<td>-8,0220</td>
<td>-11,5857</td>
<td>-4,4584</td>
<td>-17,1549</td>
<td>1,1108</td>
</tr>
<tr>
<td>Q2 2017</td>
<td>-9,0067</td>
<td>-12,7593</td>
<td>-5,2542</td>
<td>-18,2148</td>
<td>0,2013</td>
</tr>
<tr>
<td>Q3 2017</td>
<td>-8,8519</td>
<td>-12,6404</td>
<td>-5,0635</td>
<td>-18,0860</td>
<td>0,3821</td>
</tr>
</tbody>
</table>

Vývoj tempa růstu hypotečních úvěrů v selhání je na základě hodnot uvedených v tabulce zachycen v Grafu 4.20.

Graf 4.20 Predikovaný vývoj hypotečních úvěrů v selhání

V grafu jsou znázorněny čtyři predikované konfidenční intervale, jedna vysvětlovaná proměnná a predikovaná hodnota vysvětlované proměnné PRE, jenž je bodovým odhadem poklesu hypotečních úvěrů v selhání v následujících čtyřech obdobích. Křivkou UICI je vyjádřena horní mez a křivkou LMCI dolní mez střední hodnoty konfidenčního intervalu mezi kterými je s 95 % pravděpodobností zachycen vývoj vysvětlované proměnné. Mezi horní individuální křivkou konfidenčního intervalu UICI a spodní individuální křivkou konfidenčního intervalu LICI je s 95% pravděpodobností zachycen vývoj individuální hodnoty vysvětlované proměnné.

Z grafu je patrný stabilní vývoj závislé proměnné v čase, přičemž výrazný výkyv v grafu je způsoben celosvětovou finanční krizí. Vývoj budoucí predikované hodnoty
a konfidenčních intervalů je pro následující čtyři čtvrtletí klesající, což potvrzuje také ekonomická situace. V Q1 roku 2017 jsou hodnoty úrokových sazeb a nezaměstnanosti stále velmi nízké. U HDP a inflace je situace opačná a dochází k pozvolnému růstu. S účinností od 1. prosince 2016 a 1. dubna 2017 došlo ze strany ČNB k dalšímu zpřísnění podmínek, což je reflektováno v bodové predikci prvního výsledného modelu jako růst trendu.

V posledním sledovaném čtvrtletí (Q3/2017) je predikováno tempo poklesu hypotečních úvěrů v selhání ve výši -8,85 %. Individuální hodnota tempa poklesu vysvětlované proměnné je s 95% pravděpodobností predikována v intervalu (-18,09 %; 0,38 %) a střední hodnota tempa poklesu endogenní proměnné je s 95% pravděpodobností predikována v intervalu (-12,64 %; -5,06 %).
5 Závěr

Cílem diplomové práce je posouzení vlivu vybraných faktorů na vývoj hypotečních úvěrů v selhání v České republice a predikce budoucího vývoje. Pracováno je s celkem šesti vybranými faktory, kterými jsou míra inflace, hrubý domácí produkt, obecná míra nezaměstnanosti, hypoteční úvěry poskytnuté domácnostem, úrokové sazby z nových hypotečních úvěrů a ukazatel podílu vlastního kapitálu na aktivech. Posouzení vlivu vybraných faktorů je realizováno na základě dvou lineárních regresních modelů a predikce ročního vývoje hypotečních úvěrů v selhání je uskutečněna pomocí váženého průměru prediccí obou výsledných modelů.

Diplomová práce je rozdělena do tří obsahových částí, doplněných o úvod a závěr. V první teoretické části práce je proveden popis finanční stability v České republice, charakteristika makroprudenci politiky, zařazení hypotečních trhů do finančního systému a detailní popis vývoje hypotečního trhu v České republice.

Druhá teoretická část práce je věnována metodickému popisu ekonometrické analýzy zaměřené na odhad parametrů lineárního regresního modelu prostřednictvím metody nejmenších čtverců. V této části je objasněna problematika analýzy dat, odhadu parametrů, verifikace a predikce výsledného modelu.

V dalším úseku aplikací části je provedena ekonomická analýza, která spočívá v posouzení vlivu vybraných faktorů na hypoteční úvěry v selhání a srovnání výsledků s výchozími ekonomickými hypotézami.

V první hypotéze je předpokládán pozitivní vztah mezi inflací i závislou proměnnou. S růstem inflace rostou také náklady spojené s hypotečními úvěry a pro klienty je problématičtější tyto úvěry splácet. Růst inflace rovněž působí na pokles reálných příjmů.
domácnosti, kterým poté zbývá méně finančních prostředků na splácení úvěrů. Ekonomický vztah mezi proměnnými je potvrzen u obou zkoumaných modelů. Inflace je statisticky významná, ale v prvním výsledném modelu je mezi mírou inflace a závisí proměnnou zjištěn druhý nejslabší vztah. Podobná situace je také u druhého výsledného modelu, ve kterém je mezi inflaci a hypotečními úvěry v selhání vykazován nejslabší vztah (oproti všem ostatním statisticky významným veličinám).

Mezi hrubým domácím produktem a vysvětlovanou proměnnou je očekáván negativní vztah, protože s rostoucím výstupem ekonomiky zpravidla roste bohatství lidí a zároveň klesá množství nesplacených hypotečních úvěrů. Platnost tohoto vztahu je potvrzena, ovšem vliv hrubého domácího produktu na závislost proměnnou je nejnižší ze všech zkoumaných veličin. V prvním výsledném modelu je vliv stále statisticky významný, ale z druhého výsledného modelu je již veličina vyřazena z důvodu statistické nevýznamnosti. Hlavní důvod slabších vazeb je, že vývoj závislé proměnné je sledován pouze za sektor domácností, kdežto hrubý domácí produkt je zjištěn na základě součtu spotřebních výdajů domácností, investic firem, vládních výdajů a čistého exportu. V tomto případě sektor domácností představuje pouze určité procento z celkově vyprodukovaného hrubého domácího produktu.

Pozitivní vztah je předpokládán mezi vysvětlovanou proměnnou a obecnou mírou nezaměstnanosti. S rostoucí nezaměstnaností přibývají lidé s finančními potížemi, pro něž je problematické splácet své hypoteční úvěry. Pozitivní vztah je prokázán u prvního výsledného modelu, přičemž obecná míra nezaměstnanosti je zároveň druhou nejdůležitější vysvětlující proměnnou. V druhém výsledném modelu je ovšem daná proměnná vyloučena z důvodu statisticky nevýznamnosti, což je způsobeno rozdílnými vlastnostmi obou modelů.

Z ekonomického hlediska je očekávána pozitivní vazba mezi vysvětlovanou proměnnou a hypotečními úvěry poskytnutými domácnostem. Hypoteční úvěry jsou děleny na hypoteční úvěry v selhání a bez selhání, z čehož vyplývá, že pokud roste celkový objem poskytnutých hypotečních úvěrů, vzrůstá také množství hypotečních úvěrů v selhání. Tento vztah je potvrzen, přičemž v obou modelech se jedná o třetí nejvýznamnější faktor.

Mezi proměnnými úrokové sazby z nových hypotečních úvěrů a endogenní proměnnou je předpokládán pozitivní vztah. Růst úrokových sazeb zvyšuje náklady na hypoteční úvěry, což je problém zejména pro méně bonitní osoby. Úrokové sazby jsou druhým nejvýznamnějším faktorem ve druhém výsledném modelu. Z provedených odhadů
je potvrzeno, že úrokové sazby mají pozitivní vliv na vývoj hypotečních úvěrů v selhání. Zejména v období konce fixace hypotečních úvěrů může být narázový přechod na vyšší úrokové sazby velkým problémem.

Negativní vztah je předpokládán mezi ukazatelem podílu vlastního kapitálu na aktivech a závislou proměnnou. Bankám, které půjčují větší množství peněz klientům bez důkladného prověření, klesá hodnota ukazatele podílu vlastního kapitálu na aktivech a zároveň vzrůstá množství nesplácených hypotečních úvěrů. Záporný vztah mezi závislou proměnnou a ukazatelem podílu vlastního kapitálu na aktivech je potvrzen, přičemž podle provedeného odhadu má daná veličina největší vliv na vývoj hypotečních úvěrů v selhání. V souvislosti s globální finanční a ekonomickou krizí zavádí Česká národní banka přísnější pravidla a na banky je vyvíjen tlak, aby důkladněji prověřovaly bonitu svých klientů. Na negativní vztah mezi proměnnými poukazuje také Klein (2013) ve své studii, kde je ovšem prokázáno pouze slabý vliv na hypoteční úvěry v selhání. Rozdíl ve vyhodnocené intenzitě působení tohoto faktoru je vzhledem k výsledkům diplomové práce způsoben odlišnými proměnnými v modelech a skutečností, že ve studii je pracováno s daty ze šestnácti zemí.

Poslední hypotéza souvisí s trendem a do modelu je včleněna s předpokladem záporného vlivu na vysvětlovanou proměnnou. Stále intenzivnější globalizace trhů je spojena se zpřísněváním pravidel, které musí banky v České republice dodržovat. Význam trendové proměnné je testován zvlášť pro každý model. Trend je statisticky významný pouze v případě prvního výsledného modelu, ve kterém je navíc vyhodnoceno jako nejvýznamnější faktor. V druhém výsledném modelu je regulatorní funkce připisována ukazateli podílu vlastního kapitálu na aktivech.

Závěrečný krok aplikace části spočívá v predikci hypotečních úvěrů v selhání na rok dopředu, přičemž z výsledků obou modelů je zřejmé klesající tempo vývoje hypotečních úvěrů v selhání. Konečná predikce závislé proměnné je provedena na základě váženého průměru predící jednotlivých modelů, kdy v posledním sledovaném období je predikováno tempo poklesu ve výši -8,85 %.

Na základě výsledků diplomové práce je vyhodnoceno, že na snížení hypotečních úvěrů v selhání má výrazný podíl regulace bank. Regulace bank je potřebná nejen z důvodu morálního hazardu, ale také kvůli stále intenzivnější globalizaci světové ekonomiky. Česká národní banka by proto měla i nadále pokračovat v implementaci nástrojů obsažených v Basel III., čímž velmi výrazně přispěje ke snížování hypotečních úvěrů v selhání.
Seznam použité literatury

Odborné knihy

Článek v odborném časopise nebo ve sborníku z konference

Elektronické dokumenty a ostatní

104

WWW stránky

<table>
<thead>
<tr>
<th>Abkurzungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
</tr>
<tr>
<td>ATC</td>
</tr>
<tr>
<td>Basel</td>
</tr>
<tr>
<td>BCBS</td>
</tr>
<tr>
<td>BIS</td>
</tr>
<tr>
<td>(C_t)</td>
</tr>
<tr>
<td>CI</td>
</tr>
<tr>
<td>(CPI)</td>
</tr>
<tr>
<td>ČNB</td>
</tr>
<tr>
<td>ČR</td>
</tr>
<tr>
<td>CRD IV</td>
</tr>
<tr>
<td>ČSÚ</td>
</tr>
<tr>
<td>(D)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>(d_L)</td>
</tr>
<tr>
<td>(d_U)</td>
</tr>
<tr>
<td>(df)</td>
</tr>
<tr>
<td>(diff_{ln} y_t)</td>
</tr>
<tr>
<td>(diff_y_t)</td>
</tr>
<tr>
<td>DW</td>
</tr>
<tr>
<td>(e)</td>
</tr>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>$E(y_0/x_0)$</td>
</tr>
<tr>
<td>EAD</td>
</tr>
<tr>
<td>expozice při selhání</td>
</tr>
<tr>
<td>EBA</td>
</tr>
<tr>
<td>Evropský orgán pro bankovnictví</td>
</tr>
<tr>
<td>ECB</td>
</tr>
<tr>
<td>Evropská centrální banka</td>
</tr>
<tr>
<td>EIOPA</td>
</tr>
<tr>
<td>Evropský orgán pro pojišťovnictví a zaměstnanecké penzijní pojištění</td>
</tr>
<tr>
<td>ER</td>
</tr>
<tr>
<td>Poměr vlastního kapitálu na aktivech</td>
</tr>
<tr>
<td>ERR</td>
</tr>
<tr>
<td>Zbytková hodnota</td>
</tr>
<tr>
<td>ESMA</td>
</tr>
<tr>
<td>Evropský orgán pro cenné papíry a trhy</td>
</tr>
<tr>
<td>ESS</td>
</tr>
<tr>
<td>Vysvětlený součet čtverců</td>
</tr>
<tr>
<td>ESFS</td>
</tr>
<tr>
<td>Evropský systém finančního dohledu</td>
</tr>
<tr>
<td>ESRB</td>
</tr>
<tr>
<td>Evropská rada pro systémová rizika</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>Evropská unie</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>F_{krit}</td>
</tr>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>F_{vyp}</td>
</tr>
<tr>
<td>$F_n(x)$</td>
</tr>
<tr>
<td>$growth_{y_t}$</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>H_0</td>
</tr>
<tr>
<td>H_A</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>HDP</td>
</tr>
<tr>
<td>HS</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>IBM SPSS 24</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>KS test</td>
</tr>
<tr>
<td>LCR</td>
</tr>
<tr>
<td>LGD</td>
</tr>
<tr>
<td>LICI</td>
</tr>
<tr>
<td>LMCI</td>
</tr>
<tr>
<td>$ln y_{t-1}$</td>
</tr>
<tr>
<td>$ln y_t$</td>
</tr>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>LR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LTV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MS Excel</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>NSFR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OECD</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OP</td>
</tr>
<tr>
<td>q</td>
</tr>
<tr>
<td>PACF</td>
</tr>
<tr>
<td>PD</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$PŘE^2$</td>
</tr>
<tr>
<td>PRE</td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>R^2_*</td>
</tr>
<tr>
<td>R^2_{NEW}</td>
</tr>
<tr>
<td>R^2_{OLD}</td>
</tr>
<tr>
<td>$R^2_{x_i}$</td>
</tr>
<tr>
<td>REER</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>ROE</td>
</tr>
<tr>
<td>RPSN</td>
</tr>
<tr>
<td>RSS</td>
</tr>
<tr>
<td>RVA</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>S_t</td>
</tr>
<tr>
<td>SAF</td>
</tr>
<tr>
<td>SAS</td>
</tr>
<tr>
<td>$sign.$</td>
</tr>
<tr>
<td>Sign.</td>
</tr>
<tr>
<td>Směr. Odchylka</td>
</tr>
<tr>
<td>Sq</td>
</tr>
<tr>
<td>SS</td>
</tr>
<tr>
<td>Std.</td>
</tr>
<tr>
<td>STC</td>
</tr>
<tr>
<td>t_{df}</td>
</tr>
<tr>
<td>T_t</td>
</tr>
<tr>
<td>t_{krit}</td>
</tr>
<tr>
<td>t_{vyp}</td>
</tr>
<tr>
<td>TOL</td>
</tr>
</tbody>
</table>
TSS Total Sum of Squares
úplný součet čtverců

UICI Upper Individual Confidence Interval
horní hranice konfidenčního intervalu pro individuální hodnotu

UMCI Upper Mean Confidence Interval
horní hranice konfidenčního intervalu pro střední hodnotu

\[
\text{var}(\hat{y}_0)
\]
chyba predikce střední hodnoty

\[
\text{var}(y_0 - \hat{y}_0)
\]
chyba predikce individuální hodnoty

VIF faktor změny variability

\(x_n\) vysvětlující proměnná

\(x_{\text{NEW}}\) počet nově přidaných proměnných

\(\bar{x}\) průměrná hodnota nezávislé proměnné

\(x_{0.25}\) dolní kvantil

\(x_{0.5}\) medián

\(x_{0.75}\) horní kvantil

\(y_i\) vysvětlovaná, závislá, endogenní proměnná

\(y_{i-1}\) vysvětlovaná proměnná zpožděná o jedno období

\(\bar{y}_i\) průměrná hodnota závislé proměnné

\(\hat{y}_i\) odhad vysvětlované proměnné

\(y_0\) individuální hodnota

\(\hat{y}_0\) bodová predikce střední hodnoty

\(y_0/x_0\) konfidenční interval individuální hodnoty

\(z_{\text{krit}}\) kritická hodnota z-statistiky

\(\alpha\) hladina významnosti
α_i koeficent citlivosti

$p_{\alpha_{vyp}}$ p-hodnota (F-statistika)

$t_{\alpha_{vyp}}$ p-hodnota (t-statistika)

β_n neznámý parametr modelu

$\hat{\beta}_t$ odhad hodnoty parametru

λ_i vlastní číslo korelační matice

λ_{max} největší vlastní číslo korelační matice

μ_i střední hodnota parametru

π_t inflace měřená indexem CPI

$\hat{\rho}$ odhad vzájemné závislosti standardizovaných reziduí

$\hat{\sigma}_{\beta_i}$ odhad směrodatné odchylky parametru

$\hat{\sigma}^2_{\beta_{vyp}}$ odhad rozptylu u zpožděné proměnné

ε_i náhodná složka

$\hat{\varepsilon}_i^2$ kvadratická hodnota reziduální složky

$\phi(x)$ teoretická distribuční funkce

χ^2_{vyp} hodnota chí-statistiky

χ^2_{krit} kritická hodnota chí-statistiky
Seznam tabulek

Tab. 2.1 Sazby kapitálové rezervy ke krytí systémového rizika ... 22
Tab. 2.2 Doporučení k poskytování retailových úvěrů zajištěných nemovitostí 24
Tab. 2.3 Hlavní cíle makroprudenci politiky ČNB ... 26
Tab. 4.1 Jednorozměrná popisná statistika .. 75
Tab. 4.2 Odhady parametrů prvního modelu (M1.1) ... 78
Tab. 4.3 Odhady parametrů druhého modelu (M2.1) ... 79
Tab. 4.4 Koefficencie determinace obou modelů (M1.1 a M2.1) ... 79
Tab. 4.5 Anova a,b. prvního modelu (M1.1) .. 80
Tab. 4.6 Anova a,b. druhého modelu (M2.1) ... 80
Tab. 4.7 Statistika reziduí a obou modelů (M1.1 a M2.1) .. 80
Tab. 4.8 Výpočet testových hodnot pro parametry obou modelů (M1.1 a M2.1) 82
Tab. 4.9 Výpočet testových hodnot pro oba modely (M1.1 a M2.1) .. 83
Tab. 4.10 Whiteův test - výpočet testových hodnot pro oba nové modely (M1.1 a M2.1) 87
Tab. 4.11 Vícenásobný R^2 - nově odhadnuté regresní modely (M1.1 a M2.1) 88
Tab. 4.12 Vícenásobný R^2 - výpočet testových hodnot pro jednotlivé proměnné 88
Tab. 4.13 Vícenásobný R^2 - výpočet VIF, TOL a CI jednotlivých proměnných 89
Tab. 4.14 RESET test - výpočet testových hodnot pro oba nové modely (M1.1 a M2.1) 90
Tab. 4.15 KS test - výpočet testových hodnot pro oba modely (M1.1 a M2.1) 93
Tab. 4.16 Bodová predikce vysvětlujících proměnných výsledných modelů 97
Tab. 4.17 Intervalová predikce vysvětlujících proměnných výsledných modelů 98
Tab. 4.18 Roční predikce vývoje hypotečních úvěrů v selhání .. 99
Seznam grafů

Graf 3.1 Grafické zobrazení rozhodovacího pravidla t-statistiky .. 46
Graf 3.2 Testování statistické významnosti regresního modelu ... 47
Graf 3.3 Testování autokorelace .. 50
Graf 4.1 Vývoj hypotečních úvěrů v selhání ... 67
Graf 4.2 Vývoj inflace .. 68
Graf 4.3 Vývoj HDP .. 69
Graf 4.4 Vývoj obecné míry nezaměstnanosti .. 70
Graf 4.5 Vývoj hypotečních úvěrů na bydlení ... 71
Graf 4.6 Vývoj úrokových sazeb nově sjednaných hypotečních úvěrů .. 72
Graf 4.7 Vývoj ER ... 73
Graf 4.8 Vývoj HDP, sezónně očištěno ... 74
Graf 4.9 Rozložení reziduí prvního modelu (M1.1) .. 81
Graf 4.10 Rozložení reziduí druhého modelu (M2.1) .. 81
Graf 4.11 Liniový graf a bodový diagram reziduí prvního modelu (M1.1) ... 84
Graf 4.12 Liniový graf a bodový diagram reziduí druhého modelu (M2.1) ... 84
Graf 4.13 ACF a PACF graf reziduální složky prvního modelu (M1.1) ... 85
Graf 4.14 ACF a PACF graf reziduální složky druhého modelu (M2.1) ... 85
Graf 4.15 Specifikace modelu - liniové grafy reziduí obou modelů (M1.1 a M2.1) 90
Graf 4.16 Pravděpodobnostní P-P a Q-Q grafy prvního modelu (M1.1) ... 91
Graf 4.17 Histogramu rozdělení četností reziduí prvního modelu (M1.1) ... 91
Graf 4.18 Pravděpodobnostní P-P a Q-Q grafy druhého modelu (M2.1) ... 92
Graf 4.19 Histogramu rozdělení četností reziduí druhého modelu (M2.1) ... 92
Graf 4.20 Predikovaný vývoj hypotečních úvěrů v selhání .. 99
Prohlášení o využití výsledků diplomové práce

Prohlašuji, že

- jsem byla seznámena s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. – autorský zákon, zejména § 35 – užití díla v rámci občanských a náboženských obřadů, v rámci školních představení a užití díla školního a § 60 – školní dílo;
- beru na vědomí, že Vysoká škola báňská – Technická univerzita Ostrava (dále jen VŠB-TUO) má právo nevýdělečně, ke své vnitřní potřebě, diplomovou práci užít (§ 35 odst. 3);
- souhlasím s tím, že diplomová práce bude v elektronické podobě archivována v Ústřední knihovně VŠB-TUO a jeden výtisk bude uložen u vedoucího diplomové práce. Souhlasím s tím, že bibliografické údaje o diplomové práci budou zveřejněny v informačním systému VŠB-TUO;
- bylo sjednáno, že s VŠB-TUO, v případě zájmu z její strany, uzavřu licenční smlouvu s oprávněním užít dílo v rozsahu § 12 odst. 4 autorského zákona;
- bylo sjednáno, že užit své dílo, diplomovou práci, nebo poskytnout licenci k jejímu využití mohu jen se souhlasem VŠB-TUO, která je oprávněna v takovém případě ode mne požadovat příměřený příspěvek na úhradu nákladů, které byly VŠB-TUO na vytvoření díla vynaloženy (až do jejich skutečné výše).

V Ostravě, dne 21. dubna 2017

Zdeněka Schindlerová

Zdeněka Schindlerová
Přílohy

Příloha č. 1 Zobrazení vztahů mezi závislou a nezávislými proměnnými prvního modelu (M1)

Příloha č. 2 Zobrazení vztahů mezi závislou a nezávislými proměnnými druhého modelu (M2)

Příloha č. 3 Výsledky deskriptivní statistiky obou modelů (M1 a M2)

Příloha č. 4 Vývoj analyzovaných veličin ve zvětšeném měřítku

Příloha č. 5 Box-plot jednotlivých proměnných prvního modelu (M1)

Příloha č. 6 Box-plot jednotlivých proměnných druhého modelu (M2)

Příloha č. 7 Korelační matice prvního modifikovaného modelu

Příloha č. 8 Korelační matice druhého modifikovaného modelu

Příloha č. 9 Křížová korelace prvního modifikovaného modelu

Příloha č. 10 Křížová korelace druhého modifikovaného modelu

Příloha č. 11 Postup úpravy prvního modifikovaného modelu

Příloha č. 12 Postup úpravy druhého modifikovaného modelu

Příloha č. 13 Korelační matice obou modelů (M1.1 a M2.1)

Příloha č. 14 Bodový diagram rozložení kvadratických reziduí prvního modelu (M1.1)

Příloha č. 15 Bodový diagram rozložení kvadratických reziduí druhého modelu (M2.1)

Příloha č. 16 KS – test obou modelů (M1.1 a M2.1)
Příloha č. 1 Zobrazení vztahů mezi závislou a nezávislými proměnnými prvního modelu (M1)

R² Linear = 0,073 Inflace meziroční změna CPI

R² Linear = 0,483 HDP - výdajová metoda

R² Linear = 0,075 Obecná míra nezaměstnanosti

R² Linear = 0,886 Hypoteční úvěry na bydlení
Příloha č. 2 Zobrazení vztahů mezi závislou a nezávislými proměnnými druhého modelu (M2)

R² Linear = 0,333 Inflace meziroční změna CPI

R² Linear = 0,043 HDP - výdajová metoda

R² Linear = 0,200 Obecná míra nezaměstnanosti

R² Linear = 0,733 Hypoteční úvěry na bydlení

R² Linear = 0,506 Úrokové sazby - nové obchody

R² Linear = 0,793 Podíl vlastního kapitálu na aktivech
Příloha č. 3 Výsledky deskriptivní statistiky obou modelů (M1 a M2)

<table>
<thead>
<tr>
<th>M1</th>
<th>(^1HS)</th>
<th>(\pi)</th>
<th>HDP</th>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet pozorování</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Chybějící pozorování</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Střední hodnota</td>
<td>11490,9103</td>
<td>1,8876</td>
<td>956319,0172</td>
<td>6,5983</td>
<td>459542,2776</td>
</tr>
<tr>
<td>Medián</td>
<td>11163,9000</td>
<td>1,6739</td>
<td>988267,5000</td>
<td>7,0000</td>
<td>530893,6500</td>
</tr>
<tr>
<td>Šikmost</td>
<td>0,0550</td>
<td>1,3860</td>
<td>-0,6250</td>
<td>-0,6220</td>
<td>-0,0850</td>
</tr>
<tr>
<td>Std. chyba šikmosti</td>
<td>0,3140</td>
<td>0,3140</td>
<td>0,3140</td>
<td>0,3140</td>
<td>0,3140</td>
</tr>
<tr>
<td>Špičatost</td>
<td>-1,8240</td>
<td>2,3530</td>
<td>-0,5020</td>
<td>-0,7120</td>
<td>-1,4920</td>
</tr>
<tr>
<td>Std. chyba špičatosti</td>
<td>0,6180</td>
<td>0,6180</td>
<td>0,6180</td>
<td>0,6180</td>
<td>0,6180</td>
</tr>
<tr>
<td>Minimum</td>
<td>589,9000</td>
<td>-0,4175</td>
<td>727865,0000</td>
<td>4,0000</td>
<td>41878,5000</td>
</tr>
<tr>
<td>Maximum</td>
<td>23327,5000</td>
<td>7,1222</td>
<td>1112973,0000</td>
<td>8,4000</td>
<td>918911,7000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M2</th>
<th>(^2HS)</th>
<th>(\pi)</th>
<th>HDP</th>
<th>N</th>
<th>H</th>
<th>i</th>
<th>ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet pozorování</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Chybějící pozorování</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Střední hodnota</td>
<td>16344,2128</td>
<td>1,9746</td>
<td>1011751,1030</td>
<td>6,0513</td>
<td>626778,5205</td>
<td>3,9479</td>
<td>6,5308</td>
</tr>
<tr>
<td>Medián</td>
<td>18945,7000</td>
<td>1,6543</td>
<td>1011327,0000</td>
<td>6,6000</td>
<td>659000,8000</td>
<td>3,7500</td>
<td>6,6000</td>
</tr>
<tr>
<td>Šikmost</td>
<td>-0,8350</td>
<td>1,3720</td>
<td>-0,0200</td>
<td>-0,4130</td>
<td>-0,4760</td>
<td>0,0310</td>
<td>-0,4200</td>
</tr>
<tr>
<td>Std. chyba šikmosti</td>
<td>0,3780</td>
<td>0,3780</td>
<td>0,3780</td>
<td>0,3780</td>
<td>0,3780</td>
<td>0,3780</td>
<td>0,3780</td>
</tr>
<tr>
<td>Špičatost</td>
<td>-0,8710</td>
<td>1,4880</td>
<td>-0,3200</td>
<td>-1,2860</td>
<td>-0,6750</td>
<td>-1,3790</td>
<td>-1,1090</td>
</tr>
<tr>
<td>Std. chyba špičatosti</td>
<td>0,7410</td>
<td>0,7410</td>
<td>0,7410</td>
<td>0,7410</td>
<td>0,7410</td>
<td>0,7410</td>
<td>0,7410</td>
</tr>
<tr>
<td>Minimum</td>
<td>3249,0000</td>
<td>0,0000</td>
<td>912042,0000</td>
<td>4,0000</td>
<td>254144,9000</td>
<td>2,0000</td>
<td>5,0000</td>
</tr>
<tr>
<td>Maximum</td>
<td>23327,5000</td>
<td>7,1200</td>
<td>1112973,0000</td>
<td>7,8000</td>
<td>918911,7000</td>
<td>5,7400</td>
<td>7,8000</td>
</tr>
</tbody>
</table>
Příloha č. 4 Vývoj analyzovaných veličin ve zvětšeném měřítku

Úrokové sazby z nových hypotečních úvěrů

Podíl vlastního kapitálu na aktivech
Příloha č. 5 Box-plot jednotlivých proměnných prvního modelu (M1)

Hypoteční úvěry se selháním

Inflace meziroční změna CPI

HDP - sezónně očištěno

Obecná míra nezaměstnanosti

Hypoteční úvěry na bydlení
Příloha č. 6 Box-plot jednotlivých proměnných druhého modelu (M2)
Příloha č. 7 Korelační matice prvního modifikovaného modelu

<table>
<thead>
<tr>
<th>MODIFIKOVÁNÝ MODEL 1</th>
<th>growth_ HS</th>
<th>π_t_4</th>
<th>growth_ HDP_t_1</th>
<th>N</th>
<th>diff_H</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth_ HS</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.508**</td>
<td>-.307*</td>
<td>.340**</td>
<td>.420**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.020</td>
<td>.009</td>
<td>.001</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>58</td>
<td>54</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>π_t_4</td>
<td>Pearson Correlation</td>
<td>.508**</td>
<td>1</td>
<td>-.379**</td>
<td>.134</td>
<td>.310*</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.005</td>
<td>.336</td>
<td>.022</td>
<td>.397</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>growth_ HDP_t_1</td>
<td>Pearson Correlation</td>
<td>-.307*</td>
<td>-.379**</td>
<td>1</td>
<td>-.036</td>
<td>-.244</td>
</tr>
<tr>
<td>Sig.</td>
<td>.020</td>
<td>.005</td>
<td>.789</td>
<td>.068</td>
<td>.345</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>57</td>
<td>54</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>N</td>
<td>Pearson Correlation</td>
<td>.340**</td>
<td>.134</td>
<td>-.036</td>
<td>1</td>
<td>-.286*</td>
</tr>
<tr>
<td>Sig.</td>
<td>.009</td>
<td>.336</td>
<td>.789</td>
<td>.030</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>58</td>
<td>54</td>
<td>57</td>
<td>59</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>diff_H</td>
<td>Pearson Correlation</td>
<td>.420**</td>
<td>.310*</td>
<td>-.244</td>
<td>-.286*</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td>.001</td>
<td>.022</td>
<td>.068</td>
<td>.030</td>
<td>.399</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>58</td>
<td>54</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>trend</td>
<td>Pearson Correlation</td>
<td>-.574**</td>
<td>-.118</td>
<td>-.127</td>
<td>-.563**</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.397</td>
<td>.345</td>
<td>.000</td>
<td>.399</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>58</td>
<td>54</td>
<td>57</td>
<td>59</td>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>

* Korelace je významná na hladině významnosti 0.05 (oboustranný test).
** Korelace je významná na hladině významnosti 0.01 (oboustranný test).
Příloha č. 8 Korelační matice druhého modifikovaného modelu

<table>
<thead>
<tr>
<th>MODIFIKOVANÝ MODEL 2</th>
<th>growth_HS</th>
<th>πₜ₆</th>
<th>growth_HDP_t_1</th>
<th>N</th>
<th>growth_H</th>
<th>iₜ₃</th>
<th>lnER</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth_HS</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.615**</td>
<td>-.513**</td>
<td>.234</td>
<td>.682**</td>
<td>.773**</td>
<td>-.712**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.001</td>
<td>.157</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>n</td>
<td>38</td>
<td>33</td>
<td>37</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>πₜ₆</td>
<td>Pearson Correlation</td>
<td>.615**</td>
<td>1</td>
<td>-.365*</td>
<td>.572**</td>
<td>.103</td>
<td>.579**</td>
<td>-.484**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.036</td>
<td>.001</td>
<td>.570</td>
<td>.000</td>
<td>.004</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>Pearson Correlation</td>
<td>-.513**</td>
<td>-.365*</td>
<td>1</td>
<td>-.356*</td>
<td>-.345*</td>
<td>-.310</td>
<td>.204</td>
</tr>
<tr>
<td>Sig.</td>
<td>.001</td>
<td>.036</td>
<td>.030</td>
<td>.037</td>
<td>.066</td>
<td>.226</td>
<td>.146</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>37</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>N</td>
<td>Pearson Correlation</td>
<td>.234</td>
<td>.572**</td>
<td>-.356*</td>
<td>1</td>
<td>-.194</td>
<td>.445**</td>
<td>.113</td>
</tr>
<tr>
<td>Sig.</td>
<td>.157</td>
<td>.001</td>
<td>.030</td>
<td>.242</td>
<td>.007</td>
<td>.495</td>
<td>.488</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>38</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>growth_H</td>
<td>Pearson Correlation</td>
<td>.682**</td>
<td>.103</td>
<td>-.345*</td>
<td>-.194</td>
<td>1</td>
<td>.296</td>
<td>-.550**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.570</td>
<td>.037</td>
<td>.242</td>
<td>.080</td>
<td>.000</td>
<td>.004</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>38</td>
<td>33</td>
<td>37</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>iₜ₃</td>
<td>Pearson Correlation</td>
<td>.773**</td>
<td>.579**</td>
<td>-.310</td>
<td>.445**</td>
<td>.296</td>
<td>1</td>
<td>-.779**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.000</td>
<td>.066</td>
<td>.007</td>
<td>.080</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>36</td>
<td>33</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>lnER</td>
<td>Pearson Correlation</td>
<td>-.712**</td>
<td>-.484**</td>
<td>.204</td>
<td>.113</td>
<td>-.550**</td>
<td>-.779**</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.004</td>
<td>.226</td>
<td>.495</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>38</td>
<td>33</td>
<td>37</td>
<td>39</td>
<td>36</td>
<td>39</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>trend</td>
<td>Pearson Correlation</td>
<td>-.707**</td>
<td>-.556**</td>
<td>.244</td>
<td>-.114</td>
<td>-.460**</td>
<td>-.911**</td>
<td>.955**</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
<td>.001</td>
<td>.146</td>
<td>.488</td>
<td>.004</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>38</td>
<td>33</td>
<td>37</td>
<td>39</td>
<td>38</td>
<td>39</td>
<td>38</td>
<td>39</td>
</tr>
</tbody>
</table>

* Korelace je významná na hladině významnosti 0.05 (oboustranný test).
** Korelace je významná na hladině významnosti 0.01 (oboustranný test).
Příloha č. 9 Křížová korelace prvního modifikovaného modelu

growth_HS with Inflace

growth_HS with growth_HDP

growth_HS with Obecná míra nezaměstnanosti

growth_HS with diff_H

growth_HS with trend

Inflace with growth_HDP

Inflace with Obecná míra nezaměstnanosti

Inflace with diff_H

Inflace with trend

growth_HDP with Obecná míra nezaměstnanosti

growth_HDP with diff_H

growth_HDP with trend
Příloha č. 10 Křížová korelace druhého modifikovaného modelu

1. growth_HS with Inflace
2. growth_HS with growth_HDP_SAS
3. growth_HS with Obecná míra nezaměstnanosti
4. growth_HS with growth_H
5. growth_HS with Úrokové sazby - nové obchody
6. growth_HS with InER
7. growth_HS with trend
8. Inflace with growth_HDP_SAS
9. Inflace with Obecná míra nezaměstnanosti
10. Inflace with growth_H
11. Inflace with Úrokové sazby - nové obchody
12. Inflace with InER
Příloha č. 11 Postup úpravy prvního modifikovaného modelu

MODIFIKOVANÝ MODEL 1

<table>
<thead>
<tr>
<th>Koeficienty</th>
<th>Nestandardizované Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>0,0460</td>
<td>0,0640</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_{t_4}</td>
<td>0,0140</td>
<td>0,0050</td>
<td>0,2570</td>
<td>2,7180</td>
<td>0,0090</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>-1,2420</td>
<td>0,5770</td>
<td>-0,2010</td>
<td>-2,1530</td>
<td>0,0360</td>
</tr>
<tr>
<td>N</td>
<td>0,0080</td>
<td>0,0070</td>
<td>0,1220</td>
<td>1,1940</td>
<td>0,2380</td>
</tr>
<tr>
<td>diff_H</td>
<td>2,141·10^{-6}</td>
<td>0,0000</td>
<td>0,3510</td>
<td>3,7890</td>
<td>0,0000</td>
</tr>
<tr>
<td>trend</td>
<td>-0,0030</td>
<td>0,0010</td>
<td>-0,5250</td>
<td>-5,1280</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>R²</th>
<th>Očištěné R²</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFIKOVANÝ MODEL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. úprava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KONEČNÝ MODEL 1

<table>
<thead>
<tr>
<th>Koeficienty</th>
<th>Nestandardizované Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_{t_4}</td>
<td>0,01431</td>
<td>0,0050</td>
<td>0,3510</td>
<td>2,9410</td>
<td>0,0050</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>-1,059</td>
<td>0,5160</td>
<td>-0,1570</td>
<td>-2,0510</td>
<td>0,0460</td>
</tr>
<tr>
<td>N</td>
<td>0,01279</td>
<td>0,0020</td>
<td>0,8080</td>
<td>5,3640</td>
<td>0,0000</td>
</tr>
<tr>
<td>diff_H</td>
<td>2,299·10^{-6}</td>
<td>5,186·10^{-7}</td>
<td>0,4650</td>
<td>4,4340</td>
<td>0,0000</td>
</tr>
<tr>
<td>trend</td>
<td>-0,00259</td>
<td>3,54·10^{-4}</td>
<td>-0,8610</td>
<td>-7,3120</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>R²</th>
<th>Očištěné R²</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>KONEČNÝ MODEL 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. úprava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Příloha č. 12 Postup úpravy druhého modifikovaného modelu

<table>
<thead>
<tr>
<th>MODIFIKOVANÝ MODEL 2</th>
<th>Nestandardizované Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>0,5300</td>
<td>0,3330</td>
<td></td>
<td>1,5920</td>
<td>0,1240</td>
</tr>
<tr>
<td>π_t_6</td>
<td>0,0140</td>
<td>0,0040</td>
<td>0,2730</td>
<td>3,6490</td>
<td>0,0010</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>-0,6770</td>
<td>0,5620</td>
<td>-0,0850</td>
<td>-1,2040</td>
<td>0,2400</td>
</tr>
<tr>
<td>N</td>
<td>0,0030</td>
<td>0,0090</td>
<td>0,0310</td>
<td>0,2990</td>
<td>0,7680</td>
</tr>
<tr>
<td>growth_H</td>
<td>0,9150</td>
<td>0,1410</td>
<td>0,4400</td>
<td>6,4720</td>
<td>0,0000</td>
</tr>
<tr>
<td>i_t_3</td>
<td>0,0270</td>
<td>0,0210</td>
<td>0,3450</td>
<td>1,2610</td>
<td>0,2190</td>
</tr>
<tr>
<td>lnER</td>
<td>-0,3830</td>
<td>0,2150</td>
<td>-0,4130</td>
<td>-1,7830</td>
<td>0,0870</td>
</tr>
<tr>
<td>trend</td>
<td>0,0030</td>
<td>0,0040</td>
<td>0,2730</td>
<td>0,7200</td>
<td>0,4780</td>
</tr>
</tbody>
</table>

SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th>R</th>
<th>R^2</th>
<th>Očištěné R^2</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFIKOVANÝ MODEL 2</td>
<td>0,9620</td>
<td>0,9260</td>
<td>0,9050</td>
<td>0,02919</td>
</tr>
</tbody>
</table>

1. úprava

<table>
<thead>
<tr>
<th>MODIFIKOVANÝ MODEL 2</th>
<th>Nestandardizované Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>0,4720</td>
<td>0,2640</td>
<td></td>
<td>1,7840</td>
<td>0,0860</td>
</tr>
<tr>
<td>π_t_6</td>
<td>0,0140</td>
<td>0,0030</td>
<td>0,2810</td>
<td>4,1160</td>
<td>0,0000</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>-0,7320</td>
<td>0,5210</td>
<td>-0,0910</td>
<td>-1,4040</td>
<td>0,1720</td>
</tr>
<tr>
<td>growth_H</td>
<td>0,9090</td>
<td>0,1370</td>
<td>0,4370</td>
<td>6,6210</td>
<td>0,0000</td>
</tr>
<tr>
<td>i_t_3</td>
<td>0,0280</td>
<td>0,0210</td>
<td>0,3570</td>
<td>1,3430</td>
<td>0,1910</td>
</tr>
<tr>
<td>lnER</td>
<td>-0,3410</td>
<td>0,1610</td>
<td>-0,3690</td>
<td>-2,1190</td>
<td>0,0440</td>
</tr>
<tr>
<td>trend</td>
<td>0,0020</td>
<td>0,0030</td>
<td>0,2340</td>
<td>0,6690</td>
<td>0,5090</td>
</tr>
</tbody>
</table>

SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th>R</th>
<th>R^2</th>
<th>Očištěné R^2</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFIKOVANÝ MODEL 2</td>
<td>0,9620</td>
<td>0,9260</td>
<td>0,9090</td>
<td>0,02867</td>
</tr>
</tbody>
</table>

2. úprava

<table>
<thead>
<tr>
<th>MODIFIKOVANÝ MODEL 2</th>
<th>Nestandardizované Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>0,4320</td>
<td>0,2550</td>
<td></td>
<td>1,6930</td>
<td>0,1020</td>
</tr>
<tr>
<td>π_t_6</td>
<td>0,0140</td>
<td>0,0030</td>
<td>0,2840</td>
<td>4,2010</td>
<td>0,0000</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>-0,6590</td>
<td>0,5040</td>
<td>-0,0820</td>
<td>-1,3060</td>
<td>0,2030</td>
</tr>
<tr>
<td>growth_H</td>
<td>0,9200</td>
<td>0,1350</td>
<td>0,4420</td>
<td>6,8150</td>
<td>0,0000</td>
</tr>
<tr>
<td>i_t_3</td>
<td>0,0150</td>
<td>0,0100</td>
<td>0,2000</td>
<td>1,6220</td>
<td>0,1160</td>
</tr>
<tr>
<td>lnER</td>
<td>-0,2670</td>
<td>0,1160</td>
<td>-0,2890</td>
<td>-2,3070</td>
<td>0,0290</td>
</tr>
</tbody>
</table>

SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th>R</th>
<th>R^2</th>
<th>Očištěné R^2</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFIKOVANÝ MODEL 2</td>
<td>0,9620</td>
<td>0,9240</td>
<td>0,9110</td>
<td>0,02838</td>
</tr>
</tbody>
</table>
SHRNUTÍ MODELU

<table>
<thead>
<tr>
<th>R</th>
<th>R²</th>
<th>Očištěné R²</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFIKOVANÝ MODEL 2</td>
<td>0,9590</td>
<td>0,9200</td>
<td>0,9080</td>
<td>0,02873</td>
</tr>
</tbody>
</table>

KONEČNÝ MODEL 2

<table>
<thead>
<tr>
<th>Beta</th>
<th>Směr. Odchylka</th>
<th>Standardizované Beta</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>π t_6</td>
<td>0,01499</td>
<td>0,0030</td>
<td>0,4330</td>
<td>4,4070</td>
</tr>
<tr>
<td>growth_H</td>
<td>1,07500</td>
<td>0,1220</td>
<td>0,5650</td>
<td>8,8290</td>
</tr>
<tr>
<td>i t_3</td>
<td>0,02970</td>
<td>0,0050</td>
<td>1,2320</td>
<td>5,9900</td>
</tr>
<tr>
<td>lnER</td>
<td>-0,07603</td>
<td>0,0090</td>
<td>-1,4250</td>
<td>-8,8970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>R²</th>
<th>Očištěné R²</th>
<th>St. Chyba Odhadu</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>KONEČNÝ MODEL 2</td>
<td>0,9620</td>
<td>0,9250</td>
<td>0,9140</td>
<td>0,02982</td>
</tr>
</tbody>
</table>

Příloha č. 13 Korelační matice obou modelů (M1.1 a M2.1)

<table>
<thead>
<tr>
<th></th>
<th>growth_HS</th>
<th>π_t_4</th>
<th>growth_HDP_t_1</th>
<th>N</th>
<th>diff_H</th>
<th>trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth_HS</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.556**</td>
<td>-282*</td>
<td>.335*</td>
<td>.437**</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.035</td>
<td>.011</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>57</td>
<td>54</td>
<td>56</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>π_t_4</td>
<td>Pearson Correlation</td>
<td>.556**</td>
<td>1</td>
<td>-420**</td>
<td>.018</td>
<td>.433**</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.002</td>
<td>.897</td>
<td>.001</td>
<td>.406</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>growth_HDP_t_1</td>
<td>Pearson Correlation</td>
<td>-282*</td>
<td>-420**</td>
<td>1</td>
<td>-019</td>
<td>-278*</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.035</td>
<td>.002</td>
<td>.891</td>
<td>.038</td>
<td>.155</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>56</td>
<td>54</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>N</td>
<td>Pearson Correlation</td>
<td>.335*</td>
<td>.018</td>
<td>-.019</td>
<td>1</td>
<td>-281*</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.011</td>
<td>.897</td>
<td>.891</td>
<td>.034</td>
<td>.000</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>57</td>
<td>54</td>
<td>56</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>Diff_H</td>
<td>Pearson Correlation</td>
<td>.437**</td>
<td>.433**</td>
<td>-.278*</td>
<td>-.281*</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.001</td>
<td>.001</td>
<td>.038</td>
<td>.034</td>
<td>.496</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>57</td>
<td>54</td>
<td>56</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>Trend</td>
<td>Pearson Correlation</td>
<td>-.566**</td>
<td>-.115</td>
<td>-.193</td>
<td>-.562**</td>
<td>.092</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.406</td>
<td>.155</td>
<td>.000</td>
<td>.496</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>57</td>
<td>54</td>
<td>56</td>
<td>58</td>
<td>57</td>
</tr>
</tbody>
</table>

* Korelace je významná na hladině významnosti 0.05 (oboustranný test).
** Korelace je významná na hladině významnosti 0.01 (oboustranný test).

<table>
<thead>
<tr>
<th></th>
<th>growth_HS</th>
<th>π_t_6</th>
<th>growth_H</th>
<th>i_t_3</th>
<th>lnER</th>
</tr>
</thead>
<tbody>
<tr>
<td>growth_HS</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.615**</td>
<td>.682**</td>
<td>.773**</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>38</td>
<td>33</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>π_t_6</td>
<td>Pearson Correlation</td>
<td>.615**</td>
<td>1</td>
<td>.103</td>
<td>.579**</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.570</td>
<td>.000</td>
<td>.004</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>growth_H</td>
<td>Pearson Correlation</td>
<td>.682**</td>
<td>.103</td>
<td>1</td>
<td>.296</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.570</td>
<td>.080</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>38</td>
<td>33</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>i_t_3</td>
<td>Pearson Correlation</td>
<td>.773**</td>
<td>.579**</td>
<td>.296</td>
<td>1</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.000</td>
<td>.080</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>36</td>
<td>33</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>lnER</td>
<td>Pearson Correlation</td>
<td>-.712**</td>
<td>-.484**</td>
<td>-.550**</td>
<td>-.779**</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
<td>.004</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>38</td>
<td>33</td>
<td>38</td>
<td>36</td>
</tr>
</tbody>
</table>

** Korelace je významná na hladině významnosti 0.01 (oboustranný test).
Příloha č. 14 Bodový diagram rozložení kvadratických reziduí prvního modelu (M1.1)
Příloha č. 15 Bodový diagram rozložení kvadratických reziduí druhého modelu (M2.1)
Příloha č. 16 KS – test obou modelů (M1.1 a M2.1)

<table>
<thead>
<tr>
<th>M1.1</th>
<th>One-Sample Kolmogorov-Smirnov Test</th>
<th>Standardizovaná rezidua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Normalní Parametry<sup>a,b</sup></td>
<td>Střední hodnota</td>
<td>0,0104697</td>
</tr>
<tr>
<td></td>
<td>Směrodatná odchylka</td>
<td>0,96146587</td>
</tr>
<tr>
<td>Nejextrémnější rozdíly</td>
<td>Absolutní</td>
<td>0,0530</td>
</tr>
<tr>
<td></td>
<td>Pozitivní</td>
<td>0,0470</td>
</tr>
<tr>
<td></td>
<td>Negativní</td>
<td>-0,0530</td>
</tr>
<tr>
<td>Testová statistika (z<sub>yp</sub>)</td>
<td></td>
<td>0,0530</td>
</tr>
<tr>
<td>p-hodnota</td>
<td></td>
<td>0,2000<sup>c,d</sup></td>
</tr>
<tr>
<td>Exaktní hladina spolehlivosti</td>
<td></td>
<td>0,9960</td>
</tr>
<tr>
<td>Point Probability</td>
<td></td>
<td>0,0000</td>
</tr>
</tbody>
</table>

*a. Testované rozdělení je normální.
*b. Vypočteno z dat prvního modelu.
*c. Lilliefors – úprava hladiny významnosti.
d. Spodní hranice hladiny významnosti.

<table>
<thead>
<tr>
<th>M2.1</th>
<th>One-Sample Kolmogorov-Smirnov Test</th>
<th>Standardizovaná rezidua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Normalní Parametry<sup>a,b</sup></td>
<td>Střední hodnota</td>
<td>0,0058734</td>
</tr>
<tr>
<td></td>
<td>Směrodatná odchylka</td>
<td>0,95195295</td>
</tr>
<tr>
<td>Nejextrémnější rozdíly</td>
<td>Absolutní</td>
<td>0,0950</td>
</tr>
<tr>
<td></td>
<td>Pozitivní</td>
<td>0,0950</td>
</tr>
<tr>
<td></td>
<td>Negativní</td>
<td>-0,0810</td>
</tr>
<tr>
<td>Testová statistika (z<sub>yp</sub>)</td>
<td></td>
<td>0,0950</td>
</tr>
<tr>
<td>p-hodnota</td>
<td></td>
<td>0,2000<sup>c,d</sup></td>
</tr>
<tr>
<td>Exaktní hladina spolehlivosti</td>
<td></td>
<td>0,8980</td>
</tr>
<tr>
<td>Point Probability</td>
<td></td>
<td>0,0000</td>
</tr>
</tbody>
</table>

*a. Testované rozdělení je normální.
*b. Vypočteno z dat prvního modelu.
*c. Lilliefors – úprava hladiny významnosti.
d. Spodní hranice hladiny významnosti.